Wireless Monitoring of Vascular Pressure Using CB-PDMS Based Flexible Strain Sensor

Author(s):  
Hao Chong ◽  
Jason J. Lou ◽  
Christian A. Zorman ◽  
Steve J.A. Majerus
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 395
Author(s):  
Satoshi Konishi ◽  
Fuminari Mori ◽  
Ayano Shimizu ◽  
Akiya Hirata

Motion capture of a robot and tactile sensing for a robot require sensors. Strain sensors are used to detect bending deformation of the robot finger and to sense the force from an object. It is important to introduce sensors in effective combination with actuators without affecting the original performance of the robot. We are interested in the improvement of flexible strain sensors integrated into soft microrobot fingers using a pneumatic balloon actuator (PBA). A strain sensor using a microchannel filled with liquid metal was developed for soft PBAs by considering the compatibility of sensors and actuators. Inflatable deformation generated by PBAs, however, was found to affect sensor characteristics. This paper presents structural reinforcement of a liquid metal-based sensor to solve this problem. Parylene C film was deposited into a microchannel to reinforce its structure against the inflatable deformation caused by a PBA. Parylene C deposition into a microchannel suppressed the interference of inflatable deformation. The proposed method enables the effective combination of soft PBAs and a flexible liquid metal strain sensor for use in microrobot fingers.


2016 ◽  
Vol 4 (8) ◽  
pp. 4288-4295 ◽  
Author(s):  
Yuanqing Li ◽  
Yarjan Abdul Samad ◽  
Tarek Taha ◽  
Guowei Cai ◽  
Shao-Yun Fu ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Bin Feng ◽  
Hao Jin ◽  
Hao Jin ◽  
Zijing Fang ◽  
Zhentao Yu ◽  
...  

Author(s):  
Meng Wang ◽  
Lin Mu ◽  
Hao Zhang ◽  
Suqian Ma ◽  
Yunhong Liang ◽  
...  

2010 ◽  
Author(s):  
Jin-Ho Kim ◽  
Young-Ju Kim ◽  
Woon Kyung Baek ◽  
Kwon Taek Lim ◽  
Inpil Kang

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


2021 ◽  
Vol 25 ◽  
pp. 101247
Author(s):  
Duorui Wang ◽  
Xiangming Li ◽  
Hongmiao Tian ◽  
Xiaoliang Chen ◽  
Bangbang Nie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document