scholarly journals Asymmetrical PCB interconnect tree modelling with coupling effect

Author(s):  
B. Ravelo ◽  
F. Vurpillot ◽  
A. K. Jastrzebski
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 769 ◽  
Author(s):  
Fouzan A. Alfouzan ◽  
Abdulrahman M. Alotaibi ◽  
Leif H. Cox ◽  
Michael S. Zhdanov

The Saudi Arabian Glass Earth Pilot Project is a geophysical exploration program to explore the upper crust of the Kingdom for minerals, groundwater, and geothermal resources as well as strictly academic investigations. The project began with over 8000 km2 of green-field area. Airborne geophysics including electromagnetic (EM), magnetics, and gravity were used to develop several high priority targets for ground follow-up. Based on the results of airborne survey, a spectral induced polarization (SIP) survey was completed over one of the prospective targets. The field data were collected with a distributed array system, which has the potential for strong inductive coupling. This was examined in a synthetic study, and it was determined that with the geometries and conductivities in the field survey, the inductive coupling effect may be visible in the data. In this study, we also confirmed that time domain is vastly superior to frequency domain for avoiding inductive coupling, that measuring decays from 50 ms to 2 s allow discrimination of time constants from 1 ms to 5 s, and the relaxation parameter C is strongly coupled to intrinsic chargeability. We developed a method to fully include all 3D EM effects in the inversion of induced polarization (IP) data. The field SIP data were inverted using the generalized effective-medium theory of induced polarization (GEMTIP) in conjunction with an integral equation-based modeling and inversion methods. These methods can replicate all inductive coupling and EM effects, which removes one significant barrier to inversion of large bandwidth spectral IP data. The results of this inversion were interpreted and compared with results of drill hole set up in the survey area. The drill hole intersected significant mineralization which is currently being further investigated. The project can be considered a technical success, validating the methods and effective-medium inversion technique used for the project.


2021 ◽  
Vol 11 (8) ◽  
pp. 3606
Author(s):  
Seonho Lim ◽  
Young Joong Yoon

In this paper, a wideband-narrowband switchable tapered slot antenna (TSA) with a compact meander line resonator for an integrated microwave imaging and hyperthermia system was proposed. A compact meander line resonator, which exhibited band-pass characteristics and provided narrowband characteristics by using one PIN diode, was fabricated beneath the tapered slot of the wideband TSA to minimize the degradation of the wideband characteristics. Moreover, the electromagnetic energy was transferred to the meander line resonator with a coupling effect to ensure effective frequency switching. By adapting a PIN diode on the meander line resonator, frequency switching could be achieved. In this way, the proposed antenna could operate in a real-time frequency switching mode between the ultra-wideband (UWB; 3.1~10 GHz), which is used for microwave imaging, and the 2.45 GHz band (industrial, scientific, and medical, ISM band), which is used for microwave hyperthermia. Frequency and time-domain results proved the applicability of the proposed antenna to an integrated breast cancer detection and treatment system.


2021 ◽  
pp. 1-16
Author(s):  
Luuk Maria Doornebosch ◽  
David A. Abbink ◽  
Luka Peternel
Keyword(s):  

2021 ◽  
pp. 108128652110134
Author(s):  
B. Zhang ◽  
X.H. Wang ◽  
L. Elmaimouni ◽  
J.G. Yu ◽  
X.M. Zhang

In one-dimensional hexagonal piezoelectric quasi-crystals, there exist the phonon–phason, electro–phonon, and electro–phason couplings. Therefore, the phonon–phason coupling and piezoelectric effects on axial guided wave characteristics in one-dimensional hexagonal functionally graded piezoelectric quasi-crystal (FGPQC) cylinders are investigated by utilizing the Legendre polynomial series method. The dispersion curves and cut-off frequencies are illustrated. Wave characteristics in three hollow cylinders with different quasi-periodic directions are comparatively studied. Some new wave phenomena are revealed: the phonon–phason coupling and piezoelectric effects on the longitudinal and torsional phonon modes ( N = 0) vary as the quasi-periodic direction changes; the phonon–phason coupling effect on flexural–torsional modes in the r-, z-FGPQC hollow cylinders, and on flexural–longitudinal modes in ϑ-FGPQC hollow cylinders increases as N increases. The corresponding results obtained in this work lay the theoretical foundation for the design and manufacture of piezoelectric transducers with high resolution and energy-conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document