The effect of chemical species in the lead frame materials on the interface microstructure between copper alloys and SnPb solder

Author(s):  
Huang Fuxiang ◽  
S.G. Hirowo ◽  
Li Xiaoyan ◽  
Ma Jusheng
2011 ◽  
Vol 189-193 ◽  
pp. 3383-3390 ◽  
Author(s):  
Fu Xiang Huang ◽  
Ping Yin ◽  
Chun Tian Li ◽  
Ji Chao Li

The effect of chemical species of copper alloys on growth of intermetallic compounds (IMCs) at interface of solder/copper alloys for lead frame was investigated. The results have revealed that Cu is the main diffusing species during aging. After aged at 160°C for 300h, only a Cu6Sn5IMC layer is observed at SnPb/copper alloys interfaces. The growth rate of IMC on the Cu-Cr-Zr system alloys and Cu-Ni-Si alloys was much slower than that of IMC on the C19400 alloy. The Pb phase and voids were found to be inside the Cu6Sn5phase. Chromium, one of the alloying element in Cu-Cr-Zr-Zn alloys, has found to be segregated at the interface between the copper alloy/Cu6Sn5. Zn and Zr in the Cu-Cr-Zr-Zn system alloy are enriched in small amout inside the IMC. These observed results were discussed and analysed on the baisis of diffusion and growth kinetics.


2012 ◽  
Vol 560-561 ◽  
pp. 1048-1051 ◽  
Author(s):  
Juan Hua Su ◽  
Feng Zhang Ren ◽  
Ze Yang

The bending performance of lead frame materials is a very important in improving the quality of lead frame alloys and meeting the needs of high performance integrated circuit. The sringback amount of curvature variation of CuFeP , CuCrZrMg , CuNiSi and CuCrSnZn alloy are researched by numerical simulation. Bending model is built by 3D modeling software, and the necessary post-processing is carried out. The bending springback amount △K of the four kinds of copper alloy materials are calculated out. The results show that the sringback amount of curvature variation of four copper alloys at the same condition from large to small in turn is CuCrZrMg, CuNiSi, CuFeP, CuCrSnZn. Smaller the minimum relatively bending radius of copper alloy used in lead frame, less the springback amount and better the forming performance.


Author(s):  
Bankeem V. Chheda ◽  
Sathishkumar Sakthivelan ◽  
S. Manian Ramkumar ◽  
Reza Ghaffarian

With lead-free implementation it is important to examine the behaviour of the solder joint at the component level and at the board level. Assembly related issues along with component reliability are the main focus of this experimental research. This experimental study aims to evaluate the mechanical integrity of solder joints comprising of both lead-free and SnPb alloys. Lead-free and SnPb solder pastes were used to assemble the components. This will allow us to check the forward and the backward compatibility of the solder alloys. The test vehicle considered for this study contained a variety of components such as ultra chip scale package (UCSP192), package on package (PoP), plastic ball grid array (PBGA-676 & 1156), very thin chip array BGA (CVBGA432), thin small outline package (TSOP-40 & 48), dual row micro-lead frame (DRMLF), micro-lead frame (MLF-36 & 72), and chip resistors (0201, 0402, 0603). The scope of this paper is limited to the performance evaluation for area array packages only. Solder ball alloy for the area array packages included SAC 305, SAC405, SAC105, SnAg and SnPb. Three different PCB surface finishes, electroless nickel immersion gold (ENIG), SnPb hot air solder level (HASL), and immersion silver (ImAg) were used. Different solder ball alloys and surface finish combinations provided good comparison data for investigating the assembly performance. The PCB assemblies were subjected to mechanical shock test in the as-soldered condition and also after 200 and 500 thermal shock cycles at −55 to 125°C. For the mechanical shock test, the assemblies were subjected to 30 drops from a height of 3 ft, generating an average G force of 485N. After each drop the components were checked for the continuity of the total daisy chain. The number of drops for the first failure was used in analyzing the performance of the components for various combinations. Since each component had many independent daisy chains, the failure of the individual daisy chains was later used in determining the location of the failure and how it progressed. Two sets of test vehicles were assembled. One set comprised of components with lead-free solder balls of different composition (SAC305, SAC405, SAC105, SnAg) and the other set comprised of components with lead-free solder balls and SnPb solder balls (SAC305, SAC405, SnPb). This mix of alloy composition provided adequate data for comparison. It was critical to optimize the process in order to enable the melting of the mix of alloys. The area array package performance was evaluated when assembled with lead-free and SnPb solder paste. Some of the assemblies were cross-sectioned after the tests and the microstructure of the solder joint was analyzed to study the possible cause for assembly failure.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Sign in / Sign up

Export Citation Format

Share Document