A high efficiency and compact size 65nm power management module with 1.2v low-voltage PWM controller for UWB system application

Author(s):  
Yu-Huei Lee ◽  
Shih-Jung Wang ◽  
Yao-Yi Yang ◽  
Kuo-Lin Zheng ◽  
Po-Fung Chen ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1112
Author(s):  
Yu-En Wu ◽  
Jyun-Wei Wang

This study developed a novel, high-efficiency, high step-up DC–DC converter for photovoltaic (PV) systems. The converter can step-up the low output voltage of PV modules to the voltage level of the inverter and is used to feed into the grid. The converter can achieve a high step-up voltage through its architecture consisting of a three-winding coupled inductor common iron core on the low-voltage side and a half-wave voltage doubler circuit on the high-voltage side. The leakage inductance energy generated by the coupling inductor during the conversion process can be recovered by the capacitor on the low-voltage side to reduce the voltage surge on the power switch, which gives the power switch of the circuit a soft-switching effect. In addition, the half-wave voltage doubler circuit on the high-voltage side can recover the leakage inductance energy of the tertiary side and increase the output voltage. The advantages of the circuit are low loss, high efficiency, high conversion ratio, and low component voltage stress. Finally, a 500-W high step-up converter was experimentally tested to verify the feasibility and practicability of the proposed architecture. The results revealed that the highest efficiency of the circuit is 98%.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 383-392
Author(s):  
Rajveer S. Yaduvanshi ◽  
Richa Gupta ◽  
Saurabh Katiyar

AbstractSmartdielectric resonator antenna (DRA) having beam control mechanism is anew area to be explored by antenna researchers. Proposed new geometry DRA has low loss, design flexibility, high efficiency, compact size and desired radiated beam control. Developing beam control in new geometry DRAs is investigated for the first time in this letter. Unique technique for beam control and beam width control is proposed using pit top and mount top DRA. Gain is controlled from 5.0 to 9.98 dBi and beam is controlled from ±30° to ±70° in broadside radiation pattern. U shape pit DRA has maximum directive gain of 9.98 dBi and efficiency 98% at 5.8 GHz frequency. Measured and simulated results of radiation pattern and reflection coefficient are found to be in close proximity. Hardware of U shape pit top DRA, mount top DRA, left side arc top DRA, right side arc shape top DRA is developed and investigated. Mobile and cellular communication network need wide coverage, hence large beam width is required. Narrowing of beam width at higher order mode is also achieved.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruopeng Li ◽  
Hao Xu ◽  
Peixia Yang ◽  
Dan Wang ◽  
Yun Li ◽  
...  

AbstractTo achieve high efficiency of water electrolysis to produce hydrogen (H2), developing non-noble metal-based catalysts with considerable performance have been considered as a crucial strategy, which is correlated with both the interphase properties and multi-metal synergistic effects. Herein, as a proof of concept, a delicate NiCo(OH)x-CoyW catalyst with a bush-like heterostructure was realized via gas-template-assisted electrodeposition, followed by an electrochemical etching-growth process, which ensured a high active area and fast gas release kinetics for a superior hydrogen evolution reaction, with an overpotential of 21 and 139 mV at 10 and 500 mA cm−2, respectively. Physical and electrochemical analyses demonstrated that the synergistic effect of the NiCo(OH)x/CoyW heterogeneous interface resulted in favorable electron redistribution and faster electron transfer efficiency. The amorphous NiCo(OH)x strengthened the water dissociation step, and metal phase of CoW provided sufficient sites for moderate H immediate adsorption/H2 desorption. In addition, NiCo(OH)x-CoyW exhibited desirable urea oxidation reaction activity for matching H2 generation with a low voltage of 1.51 V at 50 mA cm−2. More importantly, the synthesis and testing of the NiCo(OH)x-CoyW catalyst in this study were all solar-powered, suggesting a promising environmentally friendly process for practical applications.


2018 ◽  
Author(s):  
Florian Meier ◽  
Andreas-David Brunner ◽  
Scarlet Koch ◽  
Heiner Koch ◽  
Markus Lubeck ◽  
...  

ABSTRACTIn bottom-up proteomics, peptides are separated by liquid chromatography with elution peak widths in the range of seconds, while mass spectra are acquired in about 100 microseconds with time-of-fight (TOF) instruments. This allows adding ion mobility as a third dimension of separation. Among several formats, trapped ion mobility spectrometry (TIMS) is attractive due to its small size, low voltage requirements and high efficiency of ion utilization. We have recently demonstrated a scan mode termed parallel accumulation – serial fragmentation (PASEF), which multiplies the sequencing speed without any loss in sensitivity (Meier et al., PMID: 26538118). Here we introduce the timsTOF Pro instrument, which optimally implements online PASEF. It features an orthogonal ion path into the ion mobility device, limiting the amount of debris entering the instrument and making it very robust in daily operation. We investigate different precursor selection schemes for shotgun proteomics to optimally allocate in excess of 100 fragmentation events per second. More than 800,000 fragmentation spectra in standard 120 min LC runs are easily achievable, which can be used for near exhaustive precursor selection in complex mixtures or re-sequencing weak precursors. MaxQuant identified more than 6,400 proteins in single run HeLa analyses without matching to a library, and with high quantitative reproducibility (R > 0.97). Online PASEF achieves a remarkable sensitivity with more than 2,900 proteins identified in 30 min runs of only 10 ng HeLa digest. We also show that highly reproducible collisional cross sections can be acquired on a large scale (R > 0.99). PASEF on the timsTOF Pro is a valuable addition to the technological toolbox in proteomics, with a number of unique operating modes that are only beginning to be explored.


2020 ◽  
pp. 1-10
Author(s):  
Ankit Rawat ◽  
Mohd Fazle Azeem

The modeling of BLDC motor and performance analysis under diverse operating speed settings has been presented in this paper. BLDC motors gaining more & more attention from different Industrial and domestic appliance manufacturers due to its compact size, high efficiency and robust structure. Voluminous research and developments in the domains of material science and power electronics led to substantial increase in applications of BLDC motor to electric drives. This paper deals with the modeling of BLDC motor drive system along with a comparative study of modified queens bee evolution based GA tuned & manually tuned control schemes using MATLAB /SIMULINK. In order to evaluate the performance of proposed drive, simulation is carried out at different Mechanical load & speed conditions. Test outcomes thus achieved show that the model performance is satisfactory.


Sign in / Sign up

Export Citation Format

Share Document