Stabilization of Generator Frequency Under Pulsed Load Condition Using Regenerative Propeller Braking

Author(s):  
Ronald C. Matthews ◽  
Lee J. Rashkin ◽  
Steve F. Glover ◽  
Norbert H. Doerry
Author(s):  
Dr. Hitesh Paghadar

Increasing environment noise pollution is a matter of great concern and of late has been attracting public attention. Sound produces the minute oscillatory changes in air pressure and is audible to the human ear when in the frequency range of 20Hz to 20 kHz. The chief sources of audible sound are the magnetic circuit of transformer which produces sound due to magnetostriction phenomenon, vibration of windings, tank and other structural parts, and the noise produced by cooling equipments. This paper presents the validation for sound level measurement scale, why A-weighted scale is accepted for sound level measurement, experimental study carried out on 10MVA Power Transformer. Also presents the outcomes of comparison between No-Load sound & Load sound level measurement, experimental study carried out on different transformer like - 10MVA, 50MVA, 100MVA Power Transformer, to define the dominant factor of transformer sound generation.


2011 ◽  
Vol 3 (7) ◽  
pp. 277-278
Author(s):  
Jinesh Shah ◽  
◽  
Mohammad Azim Aijaz ◽  
Pratik Kikani ◽  
Sagarkumar Shah ◽  
...  
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4160
Author(s):  
Xiaobin Li ◽  
Hongbo Ma ◽  
Junhong Yi ◽  
Song Lu ◽  
Jianping Xu

Compared with conventional forward converters, active clamp forward (ACF) converters have many advantages, including lower voltage stress on the primary power devices, the ability to switch at zero voltage, reduced EMI and duty cycle operation above 50%. Thus, it has been the most popular solution for the low bus voltage applications, such as 48 V and 28 V. However, because of the poor performance of Si MOSFETs, the efficiency of active clamp forward converters is difficult to further improved. Focusing on the bus voltage of 28 V with 18~36 V voltage range application, the Gallium Nitride high electron-mobility transistors (GaN HEMT) with ultralow on-resistance, low parasitic capacitances, and no reverse recovery, is incorporated into active clamp forward converters for achieving higher efficiency and power density, in this paper. Meanwhile, the comparative analysis is performed for Si MOSFET and GaN HEMT. In order to demonstrate the feasibility and validity of the proposed solution and comparative analysis, two 18~36 V input, 120 W/12 V output, synchronous rectification prototype with different power devices are built and compared in the lab. The experimental results show the GaN version can achieve the efficiency of 95.45%, which is around 1% higher than its counterpart under the whole load condition and the same power density of 2.2 W/cm3.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Tomoya Sakaguchi ◽  
Kazuyoshi Harada

In order to investigate cage stress in tapered roller bearings, a dynamic analysis tool considering both the six degrees of freedom of motion of the rollers and cage and the elastic deformation of the cage was developed. Cage elastic deformation is equipped using a component-mode-synthesis (CMS) method. Contact forces on the elastically deforming surfaces of the cage pocket are calculated at all node points of finite-elements on it. The location and pattern of the boundary points required for the component-mode-synthesis method were examined by comparing cage stresses in a static condition of pocket forces and constraints calculated by using the finite-element and the CMS methods. These results indicated that one boundary point lying at the center on each bar is appropriate for the effective dynamic analysis model focusing on the cage stress, especially at the pocket corners of the cages, which are actually broken. A behavior measurement of a polyamide cage in a tapered roller bearing was conducted for validating the analysis model. It was confirmed in both the experiment and analysis that the cage whirled under a large axial load condition and the cage center oscillated in a small amplitude under a small axial load condition. In the analysis, the authors discussed the four models including elastic bodies having a normal eigenmode of 0, 8 or 22, and rigid-body. There were small differences among the cage center loci of the four models. These two cages having normal eigenmodes of 0 and rigid-body whirled with imperceptible fluctuations. At least approximately 8 normal eigenmodes of cages should be introduced to conduct a more accurate dynamic analysis although the effect of the number of normal eigenmodes on the stresses at the pocket corners was insignificant. From the above, it was concluded to be appropriate to introduce one boundary point lying at the center on each pocket bar of cages and approximately 8 normal eigenmodes to effectively introduce the cage elastic deformations into a dynamic analysis model.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2589
Author(s):  
Jung J. Kim

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.


Author(s):  
Laura J. Bianchi ◽  
Alan Kingstone ◽  
Evan F. Risko

Abstract The effect of cognitive load on social attention was examined across three experiments in a live pedestrian passing scenario (Experiments 1 and 2) and with the same scenario presented as a video (Experiment 3). In all three experiments, the load was manipulated using an auditory 2-back task. While the participant was wearing a mobile eye-tracker, the participant’s fixation behavior toward a confederate was recorded and analyzed based on temporal proximity from the confederate (near or far) and the specific regions of the confederate being observed (i.e., head or body). In Experiment 1 we demonstrated an effect of cognitive load such that there was a lower proportion of fixations and time spent fixating toward the confederate in the load condition. A similar pattern of results was found in Experiment 2 when a within-subject design was used. In Experiment 3, which employed a less authentic social situation (i.e., video), a similar effect of cognitive load was observed. Collectively, these results suggest attentional resources play a central role in social attentional behaviors in both authentic (real-world) and less authentic (video recorded) situations.


2021 ◽  
pp. 174702182110263
Author(s):  
Philippe Blondé ◽  
Marco Sperduti ◽  
Dominique Makowski ◽  
Pascale Piolino

Mind wandering, defined as focusing attention toward task unrelated thoughts, is a common mental state known to impair memory encoding. This phenomenon is closely linked to boredom. Very few studies, however, have tested the potential impact of boredom on memory encoding. Thus, the present study aimed at manipulating mind wandering and boredom during an incidental memory encoding task, to test their differential impact on memory encoding. Thirty-two participants performed a variant of the n-back task in which they had to indicate if the current on-screen object was the same as the previous one (1-back; low working memory load) or the one presented three trials before (3-back; high working memory load). Moreover, thought probes assessing either mind wandering or boredom were randomly presented. Afterward, a surprise recognition task was delivered. Results showed that mind wandering and boredom were highly correlated, and both decreased in the high working memory load condition, while memory performance increased. Although both boredom and mind wandering predicted memory performance taken separately, we found that mind wandering was the only reliable predictor of memory performance when controlling for boredom and working memory load. Model comparisons also revealed that a model with boredom only was outperformed by a model with mind wandering only and a model with both mind wandering and boredom, suggesting that the predictive contribution of boredom in the complete model is minimal. The present results confirm the high correlation between mind wandering and boredom and suggest that the hindering effect of boredom on memory is subordinate to the effect of mind wandering.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 600
Author(s):  
Bin Ouyang ◽  
Lu Qu ◽  
Qiyang Liu ◽  
Baoye Tian ◽  
Zhichang Yuan ◽  
...  

Due to the coupling of different energy systems, optimization of different energy complementarities, and the realization of the highest overall energy utilization rate and environmental friendliness of the energy system, distributed energy system has become an important way to build a clean and low-carbon energy system. However, the complex topological structure of the system and too many coupling devices bring more uncertain factors to the system which the calculation of the interval power flow of distributed energy system becomes the key problem to be solved urgently. Affine power flow calculation is considered as an important solution to solve uncertain steady power flow problems. In this paper, the distributed energy system coupled with cold, heat, and electricity is taken as the research object, the influence of different uncertain factors such as photovoltaic and wind power output is comprehensively considered, and affine algorithm is adopted to calculate the system power flow of the distributed energy system under high and low load conditions. The results show that the system has larger operating space, more stable bus voltage and more flexible pipeline flow under low load condition than under high load condition. The calculation results of the interval power flow of distributed energy systems can provide theoretical basis and data support for the stability analysis and optimal operation of distributed energy systems.


Sign in / Sign up

Export Citation Format

Share Document