Simulation of dynamic performances of electric-hybrid heavy working vehicles

Author(s):  
A. Soma ◽  
F. Mocera ◽  
F. Bruzzese ◽  
E. Viglietti
Keyword(s):  
2011 ◽  
Vol 250-253 ◽  
pp. 3822-3826 ◽  
Author(s):  
Xian Mai Chen ◽  
Xia Xin Tao ◽  
Gao Hang Cui ◽  
Fu Tong Wang

The general track spectrum of Chinese main railway lines (ChinaRLS) and the track spectrum of American railway lines (AmericaRLS) are compared in terms of character of frequency domain, statistical property of time domain samples and dynamic performance. That the wavelength range of the ChinaRLS, which is characterized by the three levels according to the class of railway line, is less than AmericaRLS at common wave band of 1~50m is calculated. Simultaneously, the mean square values of two kinds of track spectra are provided at the detrimental wave bands of 5~10m, 10~20m, and so on. The time-histories of ChinaRLS and AmericaRLS are simulated according to the trigonometric method, and the digital statistical nature of simulated time samples is analyzed. With inputting the two kinds of time-histories into the vehicle-railway system, the comparative analysis of the two kinds of dynamic performances for ChinaRLS and AmericaRLS is done in terms of car body acceleration, rate of wheel load reduction, wheel/rail force, and the dynamic responses of track structure. The result shows that ChinaRLS can characterize the feature of the Chinese track irregularity better than AmericaRLS, the track irregularity with the ChinaRLS of 200km/h is superior to the AmericaRLS, and the track irregularity with the ChinaRLS of 160km/h corresponds to with the sixth of AmericaRLS.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1933
Author(s):  
Xinran Guo ◽  
Yuanchu Cheng ◽  
Jiada Wei ◽  
Yitian Luo

The dynamic characteristics of hydropower unit governing systems considerably influence the stability of hydropower units and the connected power system. The dynamic performances of hydropower units with power regulation mode (PRM) and opening regulation mode (ORM) are different. This paper establishes a detailed linear model of a hydropower unit based on the Phillips–Heffron model. The damping characteristic and stability of two regulation modes with different water inertia time constants TW were analyzed. ORM tended to provide negative damping, while PRM often provided positive damping in the major parts of the frequency range within the normal frequency oscillations when TW was large. Eigenvalue analysis illustrated that PRM has better stability than ORM. To validate the analysis, a simulation under two typical faults WAS conducted based on a nonlinear model of a hydropower unit. The simulation results illustrated that the responses of units with PRM are more stable in terms of important operating parameters, such as output power, rotor speed, and power angles. For hydropower units facing challenges in stable operation, PRM is recommended to obtain good dynamic stability.


Author(s):  
Zhihua Niu ◽  
Sun Jin ◽  
Rongrong Wang ◽  
Yansong Zhang

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.


2021 ◽  
Vol 237 ◽  
pp. 114099
Author(s):  
Eid A. Gouda ◽  
Mohamed F. Kotb ◽  
Attia A. El-Fergany

2013 ◽  
Vol 42 ◽  
pp. 587-596 ◽  
Author(s):  
A. El Aroudi ◽  
R. Haroun ◽  
A. Cid-Pastor ◽  
A. Kouzou ◽  
L. Martínez-Salamero

Author(s):  
Tatsuya Hirose ◽  
Miki Imai ◽  
Kazukiyo Joshin ◽  
Keiji Watanabe ◽  
Tsutomu Ogino ◽  
...  

1984 ◽  
Vol 35 ◽  
Author(s):  
A.J. Auberton-Herve ◽  
J.P. Joly ◽  
J.M. Hode ◽  
J.C. Castagna

ABSTRACTSeeding from bulk silicon (lateral epitaxy) has been used in Ar+ laser recrystallization to achieve subboundary free silicon on insulator areas. On these areas C.MOS devices have been performed using almost entirely the standard processing steps of a bulk micronic C-MOS technology. n -MOS transistors with channel length as small as 0.3 um have shown very small leakage currents. This is attributed especially to the lack of subboundaries. A 40 % increase in the dynamic performances in comparison with equivalent size C-MOS bulk devices has been obtained (93 ps of delay time per stage for a 101 stages ring oscillator with 0.8 μm of channel length). This is the best result presented so far on recrystallized SOI. No special requirements are needed in the lay out of the circuit with the chosen seed structure. Furthermore an industrial processing rate for the laser recrystallization processing has been achieved using an elliptical laser beam, a high scan velocity (30 cm/s) and a 100 μm line to line scan step (a 4' wafer in 4 minutes).


2006 ◽  
Vol 304-305 ◽  
pp. 492-496 ◽  
Author(s):  
Yu Hou Wu ◽  
L.X. Zhang ◽  
Ke Zhang ◽  
Song Hua Li

As one of the modern manufacture technology, high-speed precision grinding takes an important part in the modern manufacture field. With the development of the technology on high-speed spindle unit, linear precision high-speed feed unit, manufacture of grinding wheel, measurement etc, a great deal of research achievements make it possible for high-speed precision grinding. In this paper, using PMAC (Programmable Multi-Axis Controller)—PC as the central controller, a new kind of high-speed precision grinder is designed and manufactured. The servo control technology of linear motor is investigated. The dynamic performances of the machine are analyzed according to the experimental results. Elliptical workpieces have been machined with this new high-speed precision grinder. Based on these research results, a very helpful approach is provided for the precision grinding of complicated workpieces, and these results promote the development of high speed grinding too.


2010 ◽  
Vol 40 (4) ◽  
pp. 395-407 ◽  
Author(s):  
Karama Kaoubaâ ◽  
J. Pelaez-Restrepo ◽  
M. Feki ◽  
B. G. M. Robert ◽  
A. El Aroudi

2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Yi-Ping Chen ◽  
Kuei-Yuan Chan

Abstract Simulation models play crucial roles in efficient product development cycles, therefore many studies aim to improve the confidence of a model during the validation stage. In this research, we proposed a dynamic model validation to provide accurate parameter settings for minimal output errors between simulation models and real model experiments. The optimal operations for setting parameters are developed to maximize the effects by specific model parameters while minimizing interactions. To manage the excessive costs associated with simulations of complex systems, we propose a procedure with three main features: the optimal excitation based on global sensitivity analysis (GSA) is done via metamodel techniques, for estimating parameters with the polynomial chaos-based Kalman filter, and validating the updated model based on hypothesis testing. An illustrative mathematical model was used to demonstrate the detail processes in our proposed method. We also apply our method on a vehicle dynamic case with a composite maneuver for exciting unknown model parameters such as inertial and coefficients of the tire model; the unknown model parameters were successfully estimated within a 95% credible interval. The contributions of this research are also underscored through multiple cases.


Sign in / Sign up

Export Citation Format

Share Document