Ex-Ey hybrid Probe for High Frequency Electromagnetic Interference Measurement

Author(s):  
Zi-Jian Zhou ◽  
Yu Du ◽  
Yu Tian ◽  
Yu-Ru Feng ◽  
Xing-Chang Wei
Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


2021 ◽  
pp. 2150050
Author(s):  
Mutaz Y. Melhem ◽  
Christiana Chamon ◽  
Shahriar Ferdous ◽  
Laszlo B. Kish

Recently, several passive and active attack methods have been proposed against the Kirchhoff–Law–Johnson–Noise (KLJN) secure key exchange scheme by utilizing direct (DC) loop currents. The DC current attacks are relatively easy, but their practical importance is low. On the other hand, parasitic alternating (AC) currents are virtually omnipresent in wire-based systems. Such situations exist due to AC ground loops and electromagnetic interference (EMI). However, utilizing AC currents for attacks is a harder problem. Here, we introduce and demonstrate AC current attacks in various frequency ranges. The attacks exploit a parasitic/periodic AC voltage-source at either Alice’s or Bob’s end. In the low-frequency case, the procedure is the generalized form of the former DC ground-loop-based attack. In the high-frequency case, the power density spectrum of the wire voltage is utilized. The attack is demonstrated in both the low and the high-frequency situations. Defense protocols against the attack are also discussed.


2020 ◽  
Vol 9 (16) ◽  
Author(s):  
Zak Loring ◽  
Sounok Sen ◽  
Eric Black-Maier ◽  
Brett D. Atwater ◽  
Stuart D. Russell ◽  
...  

Background Left ventricular assist devices (LVADs) generate electromagnetic interference that causes high‐frequency noise artifacts on 12‐lead ECGs. We describe the causes of this interference and potential solutions to aid ECG interpretation in patients with LVAD. Methods and Results Waveform data from ECGs performed before and after LVAD implantation were passed through a fast Fourier transform to identify LVAD‐related changes in the spectral profile. ECGs recorded in 9 patients with HeartMate II, HeartMate 3, and HeartWare LVADs were analyzed to identify the LVAD model‐specific spectral patterns. Waveform data were then passed through digital low‐pass and bandstop filters and redisplayed to evaluate the effect of filtering on LVAD‐related electromagnetic interference. The spectral profile of patients with HeartMate II and HeartMate 3 LVADs demonstrated a prominent signal at the device‐specific frequency of impeller rotation. In patients with the HeartMate 3 LVAD, 2 additional peaks were observed at the frequencies equivalent to the LVAD's artificial pulsatility rotational speeds. Patients with HeartWare devices demonstrated a prominent signal peak at a frequency equal to double their LVAD's set rotational speed. Applying a low‐pass filter to a value below the observed frequency peak from the LVAD significantly improved the waveform tracing and quality of the ECG. Applying a speed‐specific bandstop filter to remove the observed LVAD frequency peak also improved the clarity of the ECG without compromising physiological high‐frequency signal components. Conclusions LVADs create impeller rotational speed‐specific electromagnetic interference that can be ameliorated by application of low‐pass or bandstop filters to improve ECG clarity.


2010 ◽  
Vol 25 (9) ◽  
pp. 1803-1811 ◽  
Author(s):  
Haibo Yang ◽  
Hong Wang ◽  
Li Shui ◽  
Li He

Ni0.8Zn0.2Fe2O4/Ba0.6Sr0.4TiO3 (NZO/BST) composites with high permittivity and low loss were synthesized via the hybrid processing route. The composites possess very dense and homogenous microstructure. The NZO/BST composites show good dielectric properties and magnetic properties with low loss in high frequency range. This indicates that this kind of magnetodielectric composites can be used in high-frequency communications for the capacitor-inductor integrating devices such as electromagnetic interference filters and antennas. The permittivities of the composites were also fitted using the combination of Maxwell–Wagner polarization and modified Curie–Weiss law.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000760-000767
Author(s):  
Daniel Krueger ◽  
Ken Peterson ◽  
Laurie Euler

Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric los,s and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (−150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 413 ◽  
Author(s):  
Haoqi Zhu ◽  
Dongliang Liu ◽  
Xu Zhang ◽  
Feng Qu

The switching device in a power converter can produce very serious electromagnetic interference (EMI). In order to solve this problem and the associated reliability and stability issues, this article aimed to analyze and model the boost power factor correction (PFC) converter according to the EMI conduction path. The sources of common-mode (CM) and differential-mode (DM) noise of the boost PFC converter were analyzed, and the DM and CM equivalent circuits were deduced. Furthermore, high-frequency modeling of the common-mode inductor was developed using a precise model, and the EMI filter was designed. According to the Class B standard for EMI testing, it is better to restrain the EMI noise in the frequency range (150 kHz to 30 MHz) of the EMI conducted disturbance test. Using this method, a 2.4-kW PFC motor driving supply was designed, and the experimental results validate the analysis.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 84413-84419 ◽  
Author(s):  
Nikola M. Tosic ◽  
Andreja Samcovic ◽  
Dejan Nikolic ◽  
Dejan Drajic ◽  
Nikola Lekic

Sign in / Sign up

Export Citation Format

Share Document