Simulation of arc discharge modes in vacuum chamber

Author(s):  
A. Sokolov
Keyword(s):  
2018 ◽  
Vol 4 (4) ◽  
pp. 58 ◽  
Author(s):  
Muhammad Roslan ◽  
Misbahul Abd Rahman ◽  
Muhamad Jofri ◽  
Kashif Chaudary ◽  
Azam Mohamad ◽  
...  

The growth of multi-walled carbon nanotubes (MWCNTs) has been extensively studied using electron microscopy. The ex situ structural behavior was examined to investigate the growth of the MWCNTs under different environments and pressures using electron microscopy. The arc discharge plasma technique was applied to synthesize the MWCNTs by evaporating carbon through the arc plasma between two cylindrical graphite rods, with a background pressure of 10−2 to 102 mbar, inside a vacuum chamber under different ambient environments. The results showed that long MWCNT structures were successfully grown. We suggest that the mechanism involves: (i) fullerene formation; (ii) the elongation of fullerenes; and (iii) the growth of MWCNTs. Agglomeration with other structures then forms MWCNT bundles. We note that the pressure and environment in the vacuum chamber can affect the structure of the MWCNTs.


2021 ◽  
Vol 5 (4) ◽  
pp. 198-210
Author(s):  
M. K. Dosbolayev ◽  
A. B. Tazhen ◽  
T. S. Ramazanov

This paper presents the experimental results on electron, ion temperatures and densities in a pulsed plasma accelerator. The values of electron densities and temperatures were computed using the methods of relative intensities of Hα and Hβ lines, Hβ Stark broadening, and the technique is based on Faraday cup beam current measurements. In this work, a linear optical spectrometer S-100 was used to acquire the emission spectra of hydrogen and air plasmas. In this spectrum, there are some lines due to Fe, Cu, N2, O2, and H2. The series of visible lines in the hydrogen atom spectrum are named the Balmer series. The spectral emissions of iron and copper occur throughout the gas breakdown and ignition of an arc discharge, during the erosion and sputtering of materials. The vacuum chamber and coaxial electrodes were made. The electron temperatures and densities in a pulsed plasma accelerator, measured via relative intensities of spectral lines and Stark broadening, at a charging voltage of a capacitor bank of 3 kV and a working gas pressure in a vacuum chamber of 40 mTorr, were 2.6 eV and 1.66 · 1016 cm−3 for hydrogen plasma. These results were compared with the Faraday cup beam current measurements. However, no match was found. Considering and analyzing this distinction, we concluded that the spectral method of plasma diagnostics provides more accurate results than electrical measurement. The theory of probe measurements can give approximate results in a moving plasma.


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
A. Tanaka ◽  
M. Yamaguchi ◽  
T. Hirano

The plasma polymerization replica method and its apparatus have been devised by Tanaka (1-3). We have published several reports on its application: surface replicas of biological and inorganic specimens, replicas of freeze-fractured tissues and metal-extraction replicas with immunocytochemical markers.The apparatus for plasma polymerization consists of a high voltage power supply, a vacuum chamber containing a hydrocarbon gas (naphthalene, methane, ethylene), and electrodes of an anode disk and a cathode of the specimen base. The surface replication by plasma polymerization in negative glow phase on the cathode was carried out by gassing at 0.05-0.1 Torr and glow discharging at 1.5-3 kV D.C. Ionized hydrocarbon molecules diffused into complex surface configurations and deposited as a three-dimensionally polymerized film of 1050 nm in thickness.The resulting film on the complex surface had uniform thickness and showed no granular texture. Since the film was chemically inert, resistant to heat and mecanically strong, it could be treated with almost any organic or inorganic solvents.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


Sign in / Sign up

Export Citation Format

Share Document