Preparation and characterization of thin films of carbon nitride

Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.

Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


2010 ◽  
Vol 431-432 ◽  
pp. 466-469
Author(s):  
Dong Can Zhang ◽  
Bin Shen ◽  
Fang Hong Sun ◽  
Ming Chen ◽  
Zhi Ming Zhang

The diamond and diamond-like carbon (DLC) films were deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD) and Raman spectroscopy were used to characterize the as-deposited diamond and DLC films. To evaluate their cutting performance, comparative turning tests were conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The research results exhibited that diamond and DLC coated inserts had great advantages in cutting tests compared to uncoated insert. The flank wear of the CVD diamond coated insert maintained a very low value about 50μm before the cutting tool failure occurred. For the DLC coated insert, its flank wear always maintained a nearly constant value of 70~200μm during whole 45 minutes turning process. The flank wear of CVD diamond coated insert was lower than that of DLC coated insert before diamond films peeling off.


Author(s):  
С.Г. Давыдов ◽  
А.Н. Долгов ◽  
А.В. Корнеев ◽  
Р.Х. Якубов

AbstractThe process of electron instability development and propagation of a cathode electron beam and anomalous ion beam, followed by outburst of current in the initial stage of arc discharge was observed in rarefied plasma cloud of high-voltage vacuum diode. These events are consistent with the model of anomalous ion acceleration in interelectrode plasma at the spark stage of vacuum arc discharge.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


1999 ◽  
Vol 5 (S2) ◽  
pp. 740-741 ◽  
Author(s):  
C.A. Urbanik ◽  
B.I. Prenitzer ◽  
L.A. Gianhuzzi ◽  
S.R. Brown ◽  
T.L. Shofner ◽  
...  

Focused ion beam (FIB) instruments are useful for high spatial resolution milling, deposition, and imaging capabilities. As a result, FIB specimen preparation techniques have been widely accepted within the semiconductor community as a means to rapidly prepare high quality, site-specific specimens for transmission electron microscopy (TEM) [1]. In spite of the excellent results that have been observed for both high resolution (HREM) and standard TEM specimen preparation applications, a degree of structural modification is inherent to FIB milled surfaces [2,3]. The magnitude of the damage region that results from Ga+ ion bombardment is dependent on the operating parameters of the FIB (e.g., beam current, beam voltage, milling time, and the use of reactive gas assisted etching).Lattice defects occur as a consequence of FIB milling because the incident ions transfer energy to the atoms of the target material. Momentum transferred from the incident ions to the target atoms can result in the creation of point defects (e.g., vacancies, self interstitials, and interstitial and substitutional ion implantation), the generation of phonons, and plasmon excitation in the case of metal targets.


2002 ◽  
Vol 8 (I1) ◽  
pp. 20-20

Topic: Characterization of Non-Conductive or Charging Materials by Microbeam AnalysisThe goal of this topical conference is to present the state of the art for materials characterization of non-conductive or charging materials using microbeam analysis. Examples of charging materials include polymeric materials, ceramic materials, and photoresist materials in the microelectronic industry. Also, the characterization of biological specimens will be covered because they are prone to problems related to charging. These materials are of great technological importance and their characterization is still a great challenge because they charge when analyzed with an electron beam. The techniques of microbeam analysis that will be considered are: X-ray Microanalysis in the Electron Microprobe, Low Voltage Scanning Electron Microscopy, Environmental Scanning Electron Microscopy, Analytical Electron Microscopy with Field Emission Transmission Electron Microscopy, and Focused Ion Beam Milling for specimen preparation. World experts will present papers on these topics. Papers from this topical conference will be published in a special issue of Microscopy & Microanalysis.


2003 ◽  
Vol 792 ◽  
Author(s):  
Shinichiro Aizawa ◽  
Yuka Nasu ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTIrradiation effect of low-energy nitrogen ion beam on amorphous carbon nitride (a-CNx) thin films has been investigated. The a-CNx films were prepared on silicon single crystal substrates by hot carbon-filament chemical vapor deposition (HFCVD). After deposition, the CNx films were irradiated by a nitrogen ion beam with energy from 0.1 to 2.0 keV. Irradiation effect on the film microstructure and composition was studied by SEM and XPS, focusing on the effect of nitrogen ion beam energy. Surface and cross sectional observations by SEM reveal that the as-deposited films show a densely distributed columnar structure and the films change to be a sparsely distributed cone-like structure after irradiation. It is also found that 2.0 keV ions skeltonize the films more clearly than 0.1 kev ions. Depth profiles of nitrogen in the films observed by XPS show that nitrogen absorption into films is more prominent after irradiation by 0.1 keV nitrogen ions than 2.0 keV ions.


Sign in / Sign up

Export Citation Format

Share Document