Electrical energy consumption characterization of open-pit mining and mineral processing operations towards the use of renewable energy sources

Author(s):  
Luis Moran ◽  
Daniel Sbarbaro ◽  
Franco Ortega ◽  
Jose Espinoza
2021 ◽  
Vol 289 ◽  
pp. 05002
Author(s):  
О.S. Kuznetsova ◽  
V.V. Khanaev

Due to the ever-increasing volume of energy consumption, the number of power plants capable of generating the necessary amount of electrical energy inevitably increases. The development and construction of new renewable energy sources and distribution generation facilities, the increase in electricity consumption and the growth of the tariff stimulates the search for effective technological solutions. Also in connection with the increasing popularity and improvement of technologies, there is a natural need to assess the prospects and potential opportunities of SES in the region as a whole, and for the Irkutsk region and the Republic of Buryatia, in particular.


2021 ◽  
Vol 2 (1) ◽  
pp. 31-36
Author(s):  
Sandip Patil ◽  
◽  
Ketan Dhande ◽  

India is a developing country, with a population of about 1,387,297,452. India requires a lot of energy both for development and running all its systems smoothly. Most of the energy consumed in India is in electrical form. The electrical energy consumption of India is around 1,137.00 billion kWh of electric energy per year. When counted per person, this energy comes to an average of around 841 kWh. When looking at the tactical data given out by the Indian government, 80% of the total electrical energy is produced using fossil fuels, even though there is a lot of abundant availability of renewable energy here in India. This paper studies the various renewable energy sources currently utilized in various sectors in India. This paper looks at the effect of technical efficiency gains on energy use in industrial, agricultural, and other sectors in India, at varying levels of aggregation. This paper gives the present status of energy sources and utilization areas. Although around 80% of the average temperature zone is available in the Indian subcontinent, the electrical energy produced in India via solar energy is less than around 1.3% of total consumption. India currently produces 63.730 GW, which is very less when compared to the total energy required. Similarly, India produces 32 GW of electrical energy from the wind sector, which is very little compared to the total energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Janusz Grabara ◽  
Arsen Tleppayev ◽  
Malika Dabylova ◽  
Leonardus W. W. Mihardjo ◽  
Zdzisława Dacko-Pikiewicz

In this contemporary era, environmental problems spread at different levels in all countries of the world. Economic growth does not just depend on prioritizing the environment or improving the environmental situation. If the foreign direct investment is directed to the polluting industries, they will increase pollution and damage the environment. The purpose of the study is to consider the relationship between foreign direct investment in Kazakhstan and Uzbekistan and economic growth and renewable energy consumption. The study is based on data obtained from 1992 to 2018. The results show that there is a two-way link between foreign direct investment and renewable energy consumption in the considered two countries. The Granger causality test approach is applied to explore the causal relationship between the variables. The Johansen co-integration test approach is also employed to test for a relationship. The empirical results verify the existence of co-integration between the series. The main factors influencing renewable energy are economic growth and electricity consumption. To reduce dependence on fuel-based energy sources, Kazakhstan and Uzbekistan need to attract energy to renewable energy sources and implement energy efficiency based on rapid progress. This is because renewable energy sources play the role of an engine that stimulates the production process in the economy for all countries.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1570
Author(s):  
Tomasz Rokicki ◽  
Aleksandra Perkowska ◽  
Bogdan Klepacki ◽  
Piotr Bórawski ◽  
Aneta Bełdycka-Bórawska ◽  
...  

The paper’s main purpose was to identify and present the current situation and changes in energy consumption in agriculture in the European Union (EU) countries. The specific objectives were the determination of the degree of concentration of energy consumption in agriculture in the EU countries, showing the directions of their changes, types of energy used, and changes in this respect, establishing the correlation between energy consumption and changes in the economic and agricultural situation in the EU countries. All member states of the European Union were deliberately selected for research on 31 December 2018 (28 countries). The research period covered the years 2005–2018. The sources of materials were the literature on the subject, and data from Eurostat. Descriptive, tabular, and graphical methods were used to analyze and present materials, dynamics indicators with a stable base, Gini concentration coefficient, concentration analysis using the Lorenz curve, coefficient of variation, Kendall’s tau correlation coefficient, and Spearman’s rank correlation coefficient. A high concentration of energy consumption in agriculture was found in several EU countries, the largest in countries with the largest agricultural sector, i.e., France and Poland. There were practically no changes in the concentration level. Only in the case of renewable energy, a gradual decrease in concentration was visible. More and more countries developed technologies that allow the use of this type of energy. However, the EU countries differed in terms of the structure of the energy sources used. The majority of the basis was liquid fuels, while stable and gaseous fuels were abandoned in favor of electricity and renewable sources—according to which, in the EU countries, the research hypothesis was confirmed: a gradual diversification of energy sources used in agriculture, with a systematic increase in the importance of renewable energy sources. The second research hypothesis was also confirmed, according to which the increase in the consumption of renewable energy in agriculture is closely related to the economy’s parameters. The use of renewable energy is necessary and results from concern for the natural environment. Therefore, economic factors may have a smaller impact.


2014 ◽  
Vol 675-677 ◽  
pp. 1880-1886 ◽  
Author(s):  
Pedro D. Silva ◽  
Pedro Dinis Gaspar ◽  
J. Nunes ◽  
L.P.A Andrade

This paper provides a characterization of the electrical energy consumption of agrifood industries located in the central region of Portugal that use refrigeration systems to ensure the food safety. The study is based on the result analysis of survey data and energy characteristics of the participating companies belonging to the following agrifood sectors: meat, dairy, horticultural, distribution and wine. Through the quantification of energy consumption of companies is possible to determine the amount of greenhouse gases (GHGs) emissions indexed to its manufacturing process. Comparing the energy and GHGs emissions indexes of companies of a sector and between sectors is possible to create reference levels. With the results of this work is possible to rating the companies in relation to reference levels of energy and GHGs emissions and thus promote the rational use of energy by the application of practice measures for the improvement of the energy efficiency and the reduction of GHGs emissions.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


Author(s):  
Я.М. КАШИН ◽  
Л.Е. КОПЕЛЕВИЧ ◽  
А.В. САМОРОДОВ ◽  
Ч. ПЭН

Описаны конструктивные особенности трехвходовой аксиальной генераторной установки (ТАГУ), преобразующей кинетическую энергию ветра и световую энергию солнца и суммирующей механическую, световую и тепловую энергию с одновременным преобразованием полученной суммарной энергии в электрическую. Показаны преимущества ТАГУ перед двухвходовыми генераторными установками. Дополнительное включение стабилизатора напряжения в схему ТАГУ позволило расширить область применения стабилизированной трехвходовой аксиальной генераторной установки за счет стабилизации ее выходного напряжения. The design features of the three-input axial generating installation (TAGI), which converts the kinetic energy of wind and light energy of the sun and sums the mechanical, light and thermal energy with the simultaneous conversion of the total energy into electrical energy, are described. The benefits of TAGI in front of the two-input generating installation shown. The additional introduction of a voltage regulator into the TAGI scheme allowed to expand the scope of the stabilized three-input axial generating installation by stabilizing its output voltage.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7457
Author(s):  
Joanna Kisielińska ◽  
Monika Roman ◽  
Piotr Pietrzak ◽  
Michał Roman ◽  
Katarzyna Łukasiewicz ◽  
...  

The primary aim of this study was to assess and compare EU countries in terms of the use of renewable energy sources in road transport. The following research tasks were undertaken to realize this aim: (1) a review of the literature concerning the negative externalities in road transport, the concept of sustainable development, and legal regulations referring to the utilization of renewable energy sources; (2) presentation of changes in energy consumption (both traditional and renewable) in road transport in EU countries in the years 2008–2019; and (3) identification of leaders among the EU countries in terms of consumption of renewable energy sources in road transport. The aim and tasks were realized using the literature review and TOPSIS method as well as descriptive, tabular, and graphic methods. The analysis was conducted for 28 EU countries according to the status for 2019. The period of 2008–2019 was investigated. Sources of materials included literature on the subject and Eurostat data. Although renewable energy sources accounted for as little as 6% of total energy consumption in road transport in EU countries in 2019, this is a significant topical issue. It results from the direction in which changes need to be implemented in terms of energy generation in this area of human activity. It turned out that blended biodiesel and blended biogasoline were the most commonly used fuels originating from renewable sources. The application of the TOPSIS method resulted in the identification of five groups of EU member countries, which differed in terms of the degree of utilization of renewable energy sources in road transport. Luxemburg, Sweden, and Austria were leaders in this respect. In turn, Malta, Estonia, and Croatia were characterized by very low consumption of renewable energy. The greatest progress in the utilization of renewable energy sources in road transport was recorded in Sweden, Finland, and Bulgaria (changes in the relative closeness to the ideal solution from 0.15 to 0.27), while the greatest reduction in relation to other countries was observed in Austria, Germany, and Lithuania (changes from −0.35 to −0.22).


2021 ◽  
Vol 18 (1) ◽  
pp. 95-114
Author(s):  
Ana Radojevic ◽  
Danijela Nikolic ◽  
Jasna Radulovic ◽  
Jasmina Skerlic

The implementation of energy efficiency measures and use of renewable energy sources in educational buildings can significantly contribute to reducing energy consumption, but also to CO2 emissions in the entire public sector. The paper shows the comparison of energy consumption indicators for 61 elementary school buildings which have previously been divided in 12 groups, according to the period of construction and size, based on the national typology called TABULA, as the first step of further study on how to use the renewable energy sources. The aim of this paper is to use the energy benchmarking process to select representative facilities which are suitable for applying renewable energy sources, for their further energy efficiency improvement. Indicators of annual specific electricity consumption and CO2 emissions per unit area [kWh/m2] and per user [kWh/user] were calculated. After that, from two groups (in which the highest electricity consumption and CO2 emissions are 68.37% and 74.53% of the total consumption/ emissions), one representative facility was selected.


Sign in / Sign up

Export Citation Format

Share Document