Integration of Monte Carlo Localization and place recognition for reliable long-term robot localization

Author(s):  
Javier Perez ◽  
Fernando Caballero ◽  
Luis Merino
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 249 ◽  
Author(s):  
Song Xu ◽  
Wusheng Chou ◽  
Hongyi Dong

This paper proposes a novel multi-sensor-based indoor global localization system integrating visual localization aided by CNN-based image retrieval with a probabilistic localization approach. The global localization system consists of three parts: coarse place recognition, fine localization and re-localization from kidnapping. Coarse place recognition exploits a monocular camera to realize the initial localization based on image retrieval, in which off-the-shelf features extracted from a pre-trained Convolutional Neural Network (CNN) are adopted to determine the candidate locations of the robot. In the fine localization, a laser range finder is equipped to estimate the accurate pose of a mobile robot by means of an adaptive Monte Carlo localization, in which the candidate locations obtained by image retrieval are considered as seeds for initial random sampling. Additionally, to address the problem of robot kidnapping, we present a closed-loop localization mechanism to monitor the state of the robot in real time and make adaptive adjustments when the robot is kidnapped. The closed-loop mechanism effectively exploits the correlation of image sequences to realize the re-localization based on Long-Short Term Memory (LSTM) network. Extensive experiments were conducted and the results indicate that the proposed method not only exhibits great improvement on accuracy and speed, but also can recover from localization failures compared to two conventional localization methods.


2014 ◽  
Vol 556-562 ◽  
pp. 2266-2269
Author(s):  
Jiang Xue Fei ◽  
Song Yu

For mobile robot localization in known environment, the 5th-order Conjugate Unscented Particle Filter Monte Carlo Localization (CUPF-MCL) algorithm is proposed. CUPF-MCL combines the 5th-order Conjugate Unscented Transform (5th CUT) with Kalman Filter to generate more accuracy particle filter proposal distribution, calculating the transition density up to the 5th-order nonlinearity. In simulation, the performance of CUPF-MCL is compared with that of dead reckoning, PF-MCL, EPF-MCL and UPF-MCL. Results show that CUPF-MCL improves the accuracy of localization.


2021 ◽  
pp. 1-17
Author(s):  
Nuzhat Fatema ◽  
H Malik ◽  
Mutia Sobihah Binti Abd Halim

This paper proposed a hybrid intelligent approach based on empirical mode decomposition (EMD), autoregressive integrated moving average (ARIMA) and Monte Carlo simulation (MCS) methods for multi-step ahead medical tourism (MT) forecasting using explanatory input variables based on two decade real-time recorded database. In the proposed hybrid model, these variables are 1st extracted then medical tourism is forecasted to perform the long term as well as the short term goal and planning in the nation. The multi-step ahead medical tourism is forecasted recursively, by utilizing the 1st forecasted value as the input variable to generate the next forecasting value and this procedure is continued till third step ahead forecasted value. The proposed approach firstly tested and validated by using international tourism arrival (ITA) dataset then proposed approach is implemented for forecasting of medical tourism arrival in nation. In order to validate the performance and accuracy of the proposed hybrid model, a comparative analysis is performed by using Monte Carlo method and the results are compared. Obtained results shows that the proposed hybrid forecasting approach for medical tourism has outperformance characteristics.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773275 ◽  
Author(s):  
Francisco J Perez-Grau ◽  
Fernando Caballero ◽  
Antidio Viguria ◽  
Anibal Ollero

This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational capacity for other navigation tasks such as motion planning or control.


2021 ◽  
Vol 45 (6) ◽  
pp. 843-857
Author(s):  
Russell Buchanan ◽  
Jakub Bednarek ◽  
Marco Camurri ◽  
Michał R. Nowicki ◽  
Krzysztof Walas ◽  
...  

AbstractLegged robot navigation in extreme environments can hinder the use of cameras and lidar due to darkness, air obfuscation or sensor damage, whereas proprioceptive sensing will continue to work reliably. In this paper, we propose a purely proprioceptive localization algorithm which fuses information from both geometry and terrain type to localize a legged robot within a prior map. First, a terrain classifier computes the probability that a foot has stepped on a particular terrain class from sensed foot forces. Then, a Monte Carlo-based estimator fuses this terrain probability with the geometric information of the foot contact points. Results demonstrate this approach operating online and onboard an ANYmal B300 quadruped robot traversing several terrain courses with different geometries and terrain types over more than 1.2 km. The method keeps pose estimation error below 20 cm using a prior map with trained network and using sensing only from the feet, leg joints and IMU.


Sign in / Sign up

Export Citation Format

Share Document