Sparse colour and grey scale image restoration using a morphological method

Author(s):  
A.L. Harvey ◽  
H.A. Cohen
Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
Richard B. Mott ◽  
John J. Friel ◽  
Charles G. Waldman

X-rays are emitted from a relatively large volume in bulk samples, limiting the smallest features which are visible in X-ray maps. Beam spreading also hampers attempts to make geometric measurements of features based on their boundaries in X-ray maps. This has prompted recent interest in using low voltages, and consequently mapping L or M lines, in order to minimize the blurring of the maps.An alternative strategy draws on the extensive work in image restoration (deblurring) developed in space science and astronomy since the 1960s. A recent example is the restoration of images from the Hubble Space Telescope prior to its new optics. Extensive literature exists on the theory of image restoration. The simplest case and its correspondence with X-ray mapping parameters is shown in Figures 1 and 2.Using pixels much smaller than the X-ray volume, a small object of differing composition from the matrix generates a broad, low response. This shape corresponds to the point spread function (PSF). The observed X-ray map can be modeled as an “ideal” map, with an X-ray volume of zero, convolved with the PSF. Figure 2a shows the 1-dimensional case of a line profile across a thin layer. Figure 2b shows an idealized noise-free profile which is then convolved with the PSF to give the blurred profile of Figure 2c.


Author(s):  
J.P. Schroeter ◽  
M.A. Goldstein ◽  
J.P. Bretaudiere ◽  
L.H. Michael ◽  
R.L. Sass

We have recently established the existence of two structural states of the Z band lattice in cross section in cardiac as well as in skeletal muscle. The two structural states are related to the contractile state of the muscle. In skeletal muscle at rest, the Z band is in the small square (ss) lattice form, but tetanized muscle exhibits the basket weave (bw) form. In contrast, unstimu- lated cardiac muscle exhibits the bw form, but cardiac muscles exposed to EGTA show the ss form.We have used two-dimensional computer enhancement techniques on digitized electron micrographs to compare each lattice form as it appears in both cardiac and skeletal muscle. Both real space averaging and fourier filtering methods were used. Enhanced images were displayed as grey-scale projections, as contour maps, and in false color.There is only a slight difference between the lattices produced by the two different enhancement techniques. Thus the information presented in these images is not likely to be an artifact of the enhancement algorithm.


VASA ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 126-133 ◽  
Author(s):  
Mathias Kaspar ◽  
Iris Baumgartner ◽  
Daniel Staub ◽  
Heinz Drexel ◽  
Christoph Thalhammer

Abstract. Early detection of vascular damage in atherosclerosis and accurate assessment of cardiovascular risk factors are the basis for appropriate treatment strategies in cardiovascular medicine. The current review focuses on non-invasive ultrasound-based methods for imaging of atherosclerosis. Endothelial dysfunction is an accepted early manifestation of atherosclerosis. The most widely used technique to study endothelial function is non-invasive, flow-mediated dilation of the brachial artery under high-resolution ultrasound imaging. Although an increased intima-media thickness value is associated with future cardiovascular events in several large population studies, systematic use is not recommended in clinical practice for risk assessment of individual persons. Carotid plaque analysis with grey-scale median, 3-D ultrasound or contrast-enhanced ultrasound are promising techniques for further scientific work in prevention and therapy of generalized atherosclerosis.


1984 ◽  
Author(s):  
K.-F. Kraiss ◽  
K.-H. Kuttelwesch
Keyword(s):  

1990 ◽  
Vol 137 (3) ◽  
pp. 163 ◽  
Author(s):  
V.A. Oliveira ◽  
J.M. Nightingale

Author(s):  
F Frauscher ◽  
L Pallwein ◽  
J Gradl ◽  
M Schurich ◽  
A Pelzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document