Performances of Low SNR DVB-RCS Modem Suing Test Frequency Algorithm

Author(s):  
C. Bazile ◽  
J.-F. Delaune ◽  
X. Deplancq ◽  
J. Eudes ◽  
G. Lesthievent ◽  
...  
Keyword(s):  
Author(s):  
Abdul Hallis Abdul Aziz ◽  
Siti Azura Abuzar ◽  
Mas Elyna Azol ◽  
Nurol Husna Che Rose ◽  
Rohaslida Liyana Mohmad

2021 ◽  
Vol 11 (11) ◽  
pp. 5028
Author(s):  
Miaomiao Sun ◽  
Zhenchun Li ◽  
Yanli Liu ◽  
Jiao Wang ◽  
Yufei Su

Low-frequency information can reflect the basic trend of a formation, enhance the accuracy of velocity analysis and improve the imaging accuracy of deep structures in seismic exploration. However, the low-frequency information obtained by the conventional seismic acquisition method is seriously polluted by noise, which will be further lost in processing. Compressed sensing (CS) theory is used to exploit the sparsity of the reflection coefficient in the frequency domain to expand the low-frequency components reasonably, thus improving the data quality. However, the conventional CS method is greatly affected by noise, and the effective expansion of low-frequency information can only be realized in the case of a high signal-to-noise ratio (SNR). In this paper, well information is introduced into the objective function to constrain the inversion process of the estimated reflection coefficient, and then, the low-frequency component of the original data is expanded by extracting the low-frequency information of the reflection coefficient. It has been proved by model tests and actual data processing results that the objective function of estimating the reflection coefficient constrained by well logging data based on CS theory can improve the anti-noise interference ability of the inversion process and expand the low-frequency information well in the case of a low SNR.


2021 ◽  
Vol 17 (1-2) ◽  
pp. 3-14
Author(s):  
Stathis C. Stiros ◽  
F. Moschas ◽  
P. Triantafyllidis

GNSS technology (known especially for GPS satellites) for measurement of deflections has proved very efficient and useful in bridge structural monitoring, even for short stiff bridges, especially after the advent of 100 Hz GNSS sensors. Mode computation from dynamic deflections has been proposed as one of the applications of this technology. Apart from formal modal analyses with GNSS input, and from spectral analysis of controlled free attenuating oscillations, it has been argued that simple spectra of deflections can define more than one modal frequencies. To test this scenario, we analyzed 21 controlled excitation events from a certain bridge monitoring survey, focusing on lateral and vertical deflections, recorded both by GNSS and an accelerometer. These events contain a transient and a following oscillation, and they are preceded and followed by intervals of quiescence and ambient vibrations. Spectra for each event, for the lateral and the vertical axis of the bridge, and for and each instrument (GNSS, accelerometer) were computed, normalized to their maximum value, and printed one over the other, in order to produce a single composite spectrum for each of the four sets. In these four sets, there was also marked the true value of modal frequency, derived from free attenuating oscillations. It was found that for high SNR (signal-to-noise ratio) deflections, spectral peaks in both acceleration and displacement spectra differ by up to 0.3 Hz from the true value. For low SNR, defections spectra do not match the true frequency, but acceleration spectra provide a low-precision estimate of the true frequency. This is because various excitation effects (traffic, wind etc.) contribute with numerous peaks in a wide range of frequencies. Reliable estimates of modal frequencies can hence be derived from deflections spectra only if excitation frequencies (mostly traffic and wind) can be filtered along with most measurement noise, on the basis of additional data.


Author(s):  
Isaac See ◽  
Prabasaj Paul ◽  
Rachel B Slayton ◽  
Molly K Steele ◽  
Matthew J Stuckey ◽  
...  

Abstract Background Identifying asymptomatic individuals early through serial testing is recommended to control coronavirus disease 2019 (COVID-19) in nursing homes, both in response to an outbreak (“outbreak testing” of residents and healthcare personnel) and in facilities without outbreaks (“nonoutbreak testing” of healthcare personnel). The effectiveness of outbreak testing and isolation with or without nonoutbreak testing was evaluated. Methods Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every 3 days, or daily) and isolation of asymptomatic persons compared with symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (ie, “effectiveness”) through either outbreak testing alone or outbreak plus nonoutbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. Results Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding nonoutbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of nonoutbreak testing were mostly negated if accompanied by decreases in infection control practice. Conclusions When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4623
Author(s):  
Sinead Barton ◽  
Salaheddin Alakkari ◽  
Kevin O’Dwyer ◽  
Tomas Ward ◽  
Bryan Hennelly

Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However, Raman scattering is a weak process, resulting in a trade-off between acquisition times and signal-to-noise ratios, which has limited its more widespread adoption as a clinical tool. Typically denoising is applied to the Raman spectrum from a biological sample to improve the signal-to-noise ratio before application of statistical modeling. A popular method for performing this is Savitsky–Golay filtering. Such an algorithm is difficult to tailor so that it can strike a balance between denoising and excessive smoothing of spectral peaks, the characteristics of which are critically important for classification purposes. In this paper, we demonstrate how Convolutional Neural Networks may be enhanced with a non-standard loss function in order to improve the overall signal-to-noise ratio of spectra while limiting corruption of the spectral peaks. Simulated Raman spectra and experimental data are used to train and evaluate the performance of the algorithm in terms of the signal to noise ratio and peak fidelity. The proposed method is demonstrated to effectively smooth noise while preserving spectral features in low intensity spectra which is advantageous when compared with Savitzky–Golay filtering. For low intensity spectra the proposed algorithm was shown to improve the signal to noise ratios by up to 100% in terms of both local and overall signal to noise ratios, indicating that this method would be most suitable for low light or high throughput applications.


Sign in / Sign up

Export Citation Format

Share Document