A review of machine learning techniques using decision tree and support vector machine

Author(s):  
Madan Somvanshi ◽  
Pranjali Chavan ◽  
Shital Tambade ◽  
S. V. Shinde
2019 ◽  
Vol 7 (1) ◽  
pp. 1-12
Author(s):  
Samir Qaisar Ajmi

"To work in the commercial environment, the company needs to be a major competitor in the business market, which depends mainly on the company's resources. One of the most important resources is the employees. Based on that, the absence of the employees from work leads to deterioration and reduce production in the institutions which leads to heavy losses. There are many reasons why employees are absent from work. Those may include health problems and social occasions. The purpose of this paper was to apply machine learning techniques to predict the absenteeism at work. There are four methods have been used in this research ( neural network(NN) technique ,decision tree (DT) technique, support vector machine (SVM) technique and logistic regression (LR) technique. . decision tree model has the highest accuracy equals to 83.33% with AUC 0.834 and the support vector machine has the lowest accuracy equals to 68.47 % with AUC 0.760."


2020 ◽  
Vol 13 (1) ◽  
pp. 130-149
Author(s):  
Puneet Misra ◽  
Siddharth Chaurasia

Stock market movements are affected by numerous factors making it one of the most challenging problems for forecasting. This article attempts to predict the direction of movement of stock and stock indices. The study uses three classifiers - Artificial Neural Network, Random Forest and Support Vector Machine with four different representation of inputs. First representation uses raw data (open, high, low, close and volume), The second uses ten features in the form of technical indicators generated by use of technical analysis. The third and fourth portrayal presents two different ways of converting the indicator data into discrete trend data. Experimental results suggest that for raw data support vector machine provides the best results. For other representations, there is no clear winner regarding models applied, but portrayal of data by the proposed approach gave best overall results for all the models and financial series. Consistency of the results highlight the importance of feature generation and right representation of dataset to machine learning techniques.


RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2019 ◽  
Vol 11 (21) ◽  
pp. 2548
Author(s):  
Dong Luo ◽  
Douglas G. Goodin ◽  
Marcellus M. Caldas

Disasters are an unpredictable way to change land use and land cover. Improving the accuracy of mapping a disaster area at different time is an essential step to analyze the relationship between human activity and environment. The goals of this study were to test the performance of different processing procedures and examine the effect of adding normalized difference vegetation index (NDVI) as an additional classification feature for mapping land cover changes due to a disaster. Using Landsat ETM+ and OLI images of the Bento Rodrigues mine tailing disaster area, we created two datasets, one with six bands, and the other one with six bands plus the NDVI. We used support vector machine (SVM) and decision tree (DT) algorithms to build classifier models and validated models performance using 10-fold cross-validation, resulting in accuracies higher than 90%. The processed results indicated that the accuracy could reach or exceed 80%, and the support vector machine had a better performance than the decision tree. We also calculated each land cover type’s sensitivity (true positive rate) and found that Agriculture, Forest and Mine sites had higher values but Bareland and Water had lower values. Then, we visualized land cover maps in 2000 and 2017 and found out the Mine sites areas have been expanded about twice of the size, but Forest decreased 12.43%. Our findings showed that it is feasible to create a training data pool and use machine learning algorithms to classify a different year’s Landsat products and NDVI can improve the vegetation covered land classification. Furthermore, this approach can provide a venue to analyze land pattern change in a disaster area over time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Liu ◽  
Hua Yuan ◽  
Yongmei Wang ◽  
Weiwei Huang ◽  
Hui Xue ◽  
...  

AbstractAccumulating studies appear to suggest that the risk factors for venous thromboembolism (VTE) among young-middle-aged inpatients are different from those among elderly people. Therefore, the current prediction models for VTE are not applicable to young-middle-aged inpatients. The aim of this study was to develop and externally validate a new prediction model for young-middle-aged people using machine learning methods. The clinical data sets linked with 167 inpatients with deep venous thrombosis (DVT) and/or pulmonary embolism (PE) and 406 patients without DVT or PE were compared and analysed with machine learning techniques. Five algorithms, including logistic regression, decision tree, feed-forward neural network, support vector machine, and random forest, were used for training and preparing the models. The support vector machine model had the best performance, with AUC values of 0.806–0.944 for 95% CI, 59% sensitivity and 99% specificity, and an accuracy of 87%. Although different top predictors of adverse outcomes appeared in the different models, life-threatening illness, fibrinogen, RBCs, and PT appeared to be more consistently featured by the different models as top predictors of adverse outcomes. Clinical data sets of young and middle-aged inpatients can be used to accurately predict the risk of VTE with a support vector machine model.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


Diabetes Mellitus is considered one of the chronic diseases of humankind which causes an increase in blood sugar. Many complications are reported if DM remains untreated and unidentified. Identification of this disease requires a lot of physical and mental trauma and effort which involves visiting a doctor, blood and urine test at the diagnostic center which consumes more time. Difficulties can be over crossed using the trending technology of Machine learning. The idea of the model is to prognosticate the occurrence of a diabetic with high accuracy. Therefore, two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage. Therefore two machine learning classification algorithms namely Fine Decision Tree and Support Vector Machine are used in this experiment to detect diabetes at an early stage.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 201
Author(s):  
G Krishna Mohan ◽  
N Yoshitha ◽  
M L.N.Lavanya ◽  
A Krishna Priya

Software reliability models access the reliability by fault prediction. Reliability is a real world phenomenon with many associated real time problems and to obtain solutions to problems quickly, accurately and acceptably a large no. of soft computing techniques has been developed. We attempt to address the software failure problems by modeling software failure data using the machine learning techniques such as support vector machine (SVM) regression and generalized additive models. The study of software reliability can be categorized into three parts: modeling, measurement, improvement. Programming unwavering quality demonstrating has developed to a point that important outcomes can be acquired by applying appropriate models to the issue; there is no single model all inclusive to every one of the circumstances. We propose different machine learning methods for the evaluation of programming unwavering quality, for example, artificial neural networks, support vector machine calculation approached. We at that point break down the outcomes from machine getting the hang of demonstrating, and contrast them with that of some summed up direct displaying procedures that are proportional to programming dependability models.  


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sana Shokat ◽  
Rabia Riaz ◽  
Sanam Shahla Rizvi ◽  
Inayat Khan ◽  
Anand Paul

Revolution in technology is changing the way visually impaired people read and write Braille easily. Learning Braille in its native language can be more convenient for its users. This study proposes an improved backend processing algorithm for an earlier developed touchscreen-based Braille text entry application. This application is used to collect Urdu Braille data, which is then converted to Urdu text. Braille to text conversion has been done on Hindi, Arabic, Bangla, Chinese, English, and other languages. For this study, Urdu Braille Grade 1 data were collected with multiclass (39 characters of Urdu represented by class 1, Alif (ﺍ), to class 39, Bri Yay (ے). Total (N = 144) cases for each class were collected. The dataset was collected from visually impaired students from The National Special Education School. Visually impaired users entered the Urdu Braille alphabets using touchscreen devices. The final dataset contained (N = 5638) cases. Reconstruction Independent Component Analysis (RICA)-based feature extraction model is created for Braille to Urdu text classification. The multiclass was categorized into three groups (13 each), i.e., category-1 (1–13), Alif-Zaal (ﺫ - ﺍ), category-2 (14–26), Ray-Fay (ﻒ - ﺮ), and category-3 (27–39), Kaaf-Bri Yay (ے - ﻕ), to give better vision and understanding. The performance was evaluated in terms of true positive rate, true negative rate, positive predictive value, negative predictive value, false positive rate, total accuracy, and area under the receiver operating curve. Among all the classifiers, support vector machine has achieved the highest performance with a 99.73% accuracy. For comparisons, robust machine learning techniques, such as support vector machine, decision tree, and K-nearest neighbors were used. Currently, this work has been done on only Grade 1 Urdu Braille. In the future, we plan to enhance this work using Grade 2 Urdu Braille with text and speech feedback on touchscreen-based android phones.


Sign in / Sign up

Export Citation Format

Share Document