Parallel control technique and performance of an MPPM knowledge base machine

Author(s):  
H. Monoi ◽  
Y. Morita ◽  
H. Itoh ◽  
H. Sakai ◽  
S. Shibayama
Big Data ◽  
2016 ◽  
pp. 711-733 ◽  
Author(s):  
Jafreezal Jaafar ◽  
Kamaluddeen Usman Danyaro ◽  
M. S. Liew

This chapter discusses about the veracity of data. The veracity issue is the challenge of imprecision in big data due to influx of data from diverse sources. To overcome this problem, this chapter proposes a fuzzy knowledge-based framework that will enhance the accessibility of Web data and solve the inconsistency in data model. D2RQ, protégé, and fuzzy Web Ontology Language applications were used for configuration and performance. The chapter also provides the completeness fuzzy knowledge-based algorithm, which was used to determine the robustness and adaptability of the knowledge base. The result shows that the D2RQ is more scalable with respect to performance comparison. Finally, the conclusion and future lines of the research were provided.


Author(s):  
Du Zhang

A crucial component of an intelligent system is its knowledge base that contains knowledge about a problem domain. Knowledge base development involves domain analysis, context space definition, ontological specification, and knowledge acquisition, codification and verification. Knowledge base anomalies can affect the correctness and performance of an intelligent system. In this chapter, we describe a fixpoint semantics for a knowledge base that is based on a multi-valued logic. We then use the fixpoint semantics to provide formal definitions for four types of knowledge base anomalies: inconsistency, redundancy, incompleteness, circularity. We believe such formal definitions of knowledge base anomalies will help pave the way for a more effective knowledge base verification process.


2009 ◽  
Vol 06 (02) ◽  
pp. 205-240 ◽  
Author(s):  
JUNG-YUP KIM ◽  
ILL-WOO PARK ◽  
JUN-HO OH

In this paper, dynamic stair climbing and descending are experimentally realized for a biped humanoid robot, HUBO. Currently, in addition to biped walking on the ground, other types of biped walking such as running, jogging, and stair walking (climbing and descending) have been also studied since the end of 1990. In spite of many years of research works on stair walking, it is still a challengeable topic that requires high performance of control technique. For dynamic stair walking, we designed stair climbing and descending patterns according to a known stair configuration. Next, we defined stair climbing and descending stages for a switching control strategy. In each stage, we designed and adopted several online controllers to maintain the balance. For the simplicity and easy application, the online controllers only use the force and torque signals of the force/torque sensors of the feet. Finally, the effectiveness and performance of the proposed strategy are verified through stair climbing and descending experiments of HUBO.


Author(s):  
Linyu Lin ◽  
Paridhi Athe ◽  
Pascal Rouxelin ◽  
Nam Dinh ◽  
Jeffrey Lane

Abstract In this work, a Nearly Autonomous Management and Control (NAMAC) system is designed to diagnose the reactor state and provide recommendations to the operator for maintaining the safety and performance of the reactor. A three layer-hierarchical workflow is suggested to guide the design and development of the NAMAC system. The three layers in this workflow corresponds to knowledge base, digital twin developmental layer (for different NAMAC functions), and NAMAC operational layer. Digital twin in NAMAC is described as knowledge acquisition system to support different autonomous control functions. Therefore, based on the knowledge base, a set of digital twin models is trained to determine the plant state, predict behavior of physical components or systems, and rank available control options. The trained digital twin models are assembled according to NAMAC operational workflow to support decision-making process in selecting the optimal control actions during an accident scenario. To demonstrate the capability of the NAMAC system, a case study is designed, where a baseline NAMAC is implemented for operating a simulator of the Experimental Breeder Reactor II (EBR-II) during a single loss of flow accident. Training database for development of digital twin models is obtained by sampling the control parameters in the GOTHIC data generation engine. After the training and testing, the digital twins are assembled into a NAMAC system according to the operational workflow. This NAMAC system is coupled with the GOTHIC plant simulator, and a confusion matrix is generated to illustrate the accuracy and robustness of implemented NAMAC system. It is found that within the training databases, NAMAC can make reasonable recommendations with zero confusion rate. However, when the scenario is beyond the training cases, the confusion rate increases, especially when the scenarios are more severe. Therefore, a discrepancy checker is added to detect unexpected reactor states and alert operators for safety-minded actions.


2006 ◽  
Vol 326-328 ◽  
pp. 249-252 ◽  
Author(s):  
Byung Su Chang ◽  
Jang Gyu Lee ◽  
Tae Sam Kang

In this paper, a digital rebalance loop for MEMS gyroscope is designed and its performance test is performed. First, the system model of MEMS gyroscope is established by dynamic analysis. Then, the digital rebalance loop is designed using modern control technique. The performance of the digital rebalance loop is compared with that of conventional PID rebalance loop. Through frequency response analysis using MATLAB and experiments using a real MEMS gyroscope and digital controller, which is realized using digital signal processor (DSP), it is confirmed that the controller improves the performance of the gyroscope.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Fiseha Bogale

In this paper, the design and performance investigation of the permanent magnet machines have been done to increase the mechanical and electrical outputs improvement of the systems. A permanent magnet Dc motor (PMDM) and generator (PMDG) have been modelled and designed to improve the angular position and generated current respectively. In this work, augmentation based H 2 optimal and H infinity synthesis controllers have been designed as a controller for the two systems and a comparison between the proposed controller for tracking a reference inputs and a promising results have been obtained.


Author(s):  
Hajar Chadli ◽  
Sara Chadli ◽  
Mohamed Boutouba ◽  
Mohammed Saber ◽  
Abdelwahed Tahani

Renewable energy sources are considered as inexhaustible sources for the very long-term, as they come from natural processes that are constantly replenished. However, there are a number of challenges facing renewable energy technology adoption, like the grid connecting problems. One of the main challenges relates to the grid connecting problem is the power quality issues for power converter, such as harmonics, voltage stability, and frequency fluctuation. Hence, the inverter remains the first element to be built because of its undeniable advantages in alternative continuous conversion. However, it has some disadvantages such as high component count and complex control method. This paper presents the design and implementation of a new 7-level inverter architecture with only six switches. This architecture requires fewer components compared to other 7-level inverter topologies therefore, the overall cost, control technique complexity, and conduction losses are highly reduced. A digital phase opposition disposition sinusoidal pulse width modulation (POD-SPWM) strategy using the Arduino is adopted to improve the performance of the proposed multilevel inverter (MLI) which leads to further reduction in total harmonic sistortion (THD). In this paper, the proposed inverter is tested using Proteus software and Matlab Simulink. Finally, a laboratory setup of the proposed inverter was built to validate its workability by the experimental results.


1997 ◽  
Vol 119 (2) ◽  
pp. 200-207 ◽  
Author(s):  
G. J. Sheu ◽  
S. M. Yang ◽  
C. D. Yang

A new design methodology for the vibration control of rotor systems with a magnetic bearing is developed in this paper. The methodology combines the experimental design method in quality control engineering and the conventional PD control technique such that their advantages in implementation feasibility and performance-robustness can be integrated together. A quality loss index defined by the summation of the infinity norm of unbalanced vibration is used to characterize the system dynamics. By using the location of the magnetic bearing and PD feedback gains as design parameters, the controller can be determined by a small number of matrix experiments to achieve the best system performance. In addition, it is robust to the vibration modes within a desired speed range. A rotor system consisting of 4 rigid disks, 3 isotropic bearings, and 1 magnetic bearing is applied to illustrate the feasibility and effectiveness of the experiment-aided controller design.


2011 ◽  
Vol 383-390 ◽  
pp. 743-749
Author(s):  
Jiu Qing Liu ◽  
Wei Wang

Based on the fusion of immune feedback mechanism for the conventional PID control technique, a new immune nonlinear PID controller is proposed in this paper. The stability of immune nonlinear PID is analysised using Popov stability criterion. The controller designed not only guarantees the stability robustness and performance robustness of the system but also the tracking performance of the system. The numerical simulation results of the Material-level control of the heat milling system show the effectiveness and feasibility of our immune unlinear PID are verified in Mat lab.


Sign in / Sign up

Export Citation Format

Share Document