Detection of defects in CFRP composites by Optical Thermographic methods

Author(s):  
Waldemar Swiderski
Author(s):  
Nova T. Zamora ◽  
Kam Meng Chong ◽  
Ashish Gupta

Abstract This paper presented the recent application of die powerup in Thermal Imaging as applied to the detection of defects causing thermal failure on revenue products or units not being captured using other available techniques. Simulating the condition on an actual computer setup, the infrared (IR) camera should capture images simultaneously as the entire bootup process is being executed by the processor, thus revealing a series of images and thermal information on each and every step of the startup process. This metrology gives the failure analyst a better approach to acquire a set of information that substantiate in the conduct of rootcause analysis of thermal-related failure in revenue units, especially on customer returns. Defective units were intentionally engineered in order to collect the thermal response data and eventually come up with a plot of all known thermal-related defects.


Author(s):  
Ingrid De Wolf ◽  
Ahmad Khaled ◽  
Martin Herms ◽  
Matthias Wagner ◽  
Tatjana Djuric ◽  
...  

Abstract This paper discusses the application of two different techniques for failure analysis of Cu through-silicon vias (TSVs), used in 3D stacked-IC technology. The first technique is GHz Scanning Acoustic Microscopy (GHz- SAM), which not only allows detection of defects like voids, cracks and delamination, but also the visualization of Rayleigh waves. GHz-SAM can provide information on voids, delamination and possibly stress near the TSVs. The second is a reflection-based photoelastic technique (SIREX), which is shown to be very sensitive to stress anisotropy in the Si near TSVs and as such also to any defect affecting this stress, such as delamination and large voids.


Author(s):  
Soumya Sumit Dash ◽  
Pavan Kumar Gangineni ◽  
B. N. V. S. Ganesh Gupta K ◽  
Srinivasu Dasari ◽  
Rajesh Kumar Prusty ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2953
Author(s):  
Hao Jiang ◽  
Caiwen Ma ◽  
Ming Li ◽  
Zhiliang Cao

Ultrafast laser drilling has been proven to effectively reduce the heat-affected zone (HAZ) of carbon fiber-reinforced polymer (CFRP) composites. However, previous research mainly focused on the effects of picosecond laser parameters on CFRP drilling. Compared with a picosecond laser, a femtosecond laser can achieve higher quality CFRP drilling due to its smaller pulse width, but there are few studies on the effects of femtosecond laser parameters on CFRP drilling. Moreover, the cross-sectional taper of CFRP produced by laser drilling is very large. This paper introduces the use of the femtosecond laser to drill cylindrical holes in CFRP. The effect of laser power, rotational speed of the laser, and number of spiral passes on HAZ and ablation depth in circular laser drilling and spiral laser drilling mode was studied, respectively. It also analyzed the forming process of the drilling depth in the spiral drilling mode and studied the influence of laser energy and drilling feed depth on the holes’ diameters and the taper. The experimental results show that the cylindrical hole of CFRP with a depth-to-diameter ratio of about 3:1 (taper < 0.32∘, HAZ < 10 m) was obtained by using femtosecond laser and a spiral drilling apparatus.


2021 ◽  
Vol 84 ◽  
pp. 33-40
Author(s):  
Robert Lorentsson ◽  
Nasser Hosseini ◽  
Lars Gunnar Månsson ◽  
Magnus Båth

Author(s):  
Mohd Danish ◽  
Munish Kumar Gupta ◽  
Saeed Rubaiee ◽  
Anas Ahmed ◽  
A. Mahfouz ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 850
Author(s):  
Pietro Burrascano ◽  
Matteo Ciuffetti

Ultrasonic techniques are widely used for the detection of defects in solid structures. They are mainly based on estimating the impulse response of the system and most often refer to linear models. High-stress conditions of the structures may reveal non-linear aspects of their behavior caused by even small defects due to ageing or previous severe loading: consequently, models suitable to identify the existence of a non-linear input-output characteristic of the system allow to improve the sensitivity of the detection procedure, making it possible to observe the onset of fatigue-induced cracks and/or defects by highlighting the early stages of their formation. This paper starts from an analysis of the characteristics of a damage index that has proved effective for the early detection of defects based on their non-linear behavior: it is based on the Hammerstein model of the non-linear physical system. The availability of this mathematical model makes it possible to derive from it a number of different global parameters, all of which are suitable for highlighting the onset of defects in the structure under examination, but whose characteristics can be very different from each other. In this work, an original damage index based on the same Hammerstein model is proposed. We report the results of several experiments showing that our proposed damage index has a much higher sensitivity even for small defects. Moreover, extensive tests conducted in the presence of different levels of additive noise show that the new proposed estimator adds to this sensitivity feature a better estimation stability in the presence of additive noise.


Sign in / Sign up

Export Citation Format

Share Document