Numerical simulation of soil arching effect in deep foundation pit with different influencing factors

Author(s):  
Gaowei Yue ◽  
Fan Feng ◽  
Hui-na Jia
2012 ◽  
Vol 170-173 ◽  
pp. 950-953
Author(s):  
Zhi Tao Ma ◽  
Yong Ping Wang ◽  
Sai Jiang Liang

In recent years, Anti-slide pile has been widely used in soil reinforcement works, but the pile soil interaction is not very clear. Numerical simulation was used in this article to analyze the soil arcing effect between anti-slide piles in non-cohesive soil and the main influencing factors, such as soil horizontal pressure, pile spacing and so on were also analyzed. The results show that there has soil arching in non-cohesive soil, and the soil arching effect becomes significantly with the horizontal earth pressure increases, but when the pressure increases to a certain degree, the soil arching will be damaged. The pile spacing is also a major factor to affect the soil arching effect, increases with the pile spacing, the soil arching effect gradually weakened.


2012 ◽  
Vol 204-208 ◽  
pp. 2736-2739
Author(s):  
Guang Qian Du ◽  
Shi Jie Wang ◽  
Yan Ting Qin ◽  
Chang Zhi Zhu

Based on the pile - anchor structure soil between piles,the unified strength theory is introdued in the strength analysis of soil arching between the piles, and parabolic soil arching computational model is uniformly distributed loads ,which are given to meet the soil between piles arch static equilibrium conditions and intensity of conditions , pile spacing formula. Compared with calculations based on the pile spacing of the Mohr-Coulomb strength criterion , the proposed method can consider the contribution of the intermediate principal stress on the strength of the soil arch , the results are more in line with the actual characters of the supporting structure .


2010 ◽  
Vol 114 (3-4) ◽  
pp. 251-260 ◽  
Author(s):  
Nianqing Zhou ◽  
Pieter A. Vermeer ◽  
Rongxiang Lou ◽  
Yiqun Tang ◽  
Simin Jiang

2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


2013 ◽  
Vol 353-356 ◽  
pp. 159-162
Author(s):  
Li Liu ◽  
Hong Ru Zhang ◽  
Rui Yu Zhang

The excavation of deep foundation pit by numerical simulation is researched in this paper. Different locations of soil are selected to be as test points. Under two velocities, the law of total displacements that reflect the test points in the same locations is discussed. The variation tendency of the pore pressure under the rapid construction and tendency of the volume change under the normal construction are compared. The soil is divided to three parts in numerical simulation: the side, the bottom I and the bottom II of the foundation. The numerical results are as follows: the total displacement of the rapid construction is double for ones of the normal construction, which is on the side and the bottom I of deep foundation pit. Under the different drainage conditions, the soil on the side of deep excavation experiences the dilatancy, and then the shear-contraction, and then the dilatancy; the soil on the bottom II of deep excavation experiences the dilatancy and then the shear-contraction. The soil on the bottom I experiences the dilatancy under the normal construction; but it experiences the dilatancy and then the shear-contraction under the rapid construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huifen Liu ◽  
Kezeng Li ◽  
Jianqiang Wang ◽  
Chunxiang Cheng

Based on the deep foundation pit project of Laoguancun station of Wuhan rail transit line 16 and according to the engineering characteristics of the construction conditions and the site surrounding the environment, the method of combining field monitoring and finite element numerical simulation is adopted to analyze the law of stress and deformation of the deep foundation pit during excavation and support construction; it includes the horizontal displacement of the underground diaphragm wall, supporting axial force, and the ground surface settlement, which can be compared with measured data. Finally, some suggestions for monitoring and construction of the deep foundation pit in the subway station have been put forward and have certain reference value and practical guiding significance for the design and construction of similar engineering projects. The deformation monitoring of the retaining structure at the middle of the long side of the foundation pit should be strengthened during the construction process.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongjing Hu ◽  
Qingbiao Wang ◽  
Shuo Yang ◽  
Zhenyue Shi ◽  
Bo Liu ◽  
...  

Advancing urbanization in China requires large-scale high-rise construction and underground transportation projects. Consequently, there is an increasing number of deep foundation pits adjacent to water bodies, and accidents occur frequently. This study uses a numerical simulation method to study the stability of the deep foundation pit near water based on the Biot three-dimensional seepage-stress coupling model, with the open-cut section on the south bank of the Jinan Yellow River Tunnel Project as the engineering field test. This indicates the following: (1) the maximum horizontal displacement of the diaphragm wall occurred in the fifth excavation stage, and a horizontal brace effectively controlled the inward horizontal displacement of the foundation pit; (2) considering the effect of seepage in the soft soil foundation, the maximum vertical displacement of the ground surface at each excavation stage occurred adjacent to the underground continuous wall. As the depth of the foundation pit increased, the vertical surface settlement decreases gradually in the direction away from the excavation face; (3) considering the seepage conditions, within each interval of excavation of the foundation pit, the horizontal displacement of the continuous underground wall and ground settlement declined; and (4) the numerical simulation and field monitoring data were in good agreement. Under the conditions of accurate model simplification and parameter selection, numerical simulations can adequately forecast conditions of the actual project.


Sign in / Sign up

Export Citation Format

Share Document