Analysis of Static Magnetic Flux Density and Electromagnetic Force Distribution of a Dry-type Air-core Reactor Under Different Operating Current

Author(s):  
Fanwu Chu ◽  
Ying Fu ◽  
Qi Wang ◽  
Xiong Wu ◽  
Zongxi Liu ◽  
...  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aye T Ajiboye ◽  
Abdulrahman O Yusuf ◽  
Kamorudeen O Yusuf ◽  
Ayodele O Ogunlela

Water is said to be magnetized when it flows across the magnetic field and magnetized water finds its application in many areas of life. Despite the numerous benefits of magnetized water, very little works have been reported on the development of magnet for water magnetizer application. In most of the reported works, the detailed theoretical analysis and design procedure required for the development of the magnet was not accounted for; hence the need for the present study. Electromagnetic means of producing flux density is considered in this study due to its advantage of flux density variation, which is not achievable with the use of its permanent magnet counterparts. The design equation of short electromagnet was derived from the existing equations of coil magnetic flux density and then used for the air core electromagnet design. The variation of the magnetic flux density with the distance between two electromagnets was empirically investigated. The performance of the developed electromagnet is satisfactory, as the flux density varies between 814.6 and 510G corresponding to the gap (0 - 4cm) between the coils (i.e., water pipe diameter). Keywords— Air core, Coils, Iron core, Magnetic flux density, Magnetized water


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Aye T Ajiboye ◽  
Jaye F Opadiji ◽  
Joshua O Popoola ◽  
Oladimeji Oniyide

Designs of electromagnetic (EM) coil have attracted a lot of attention in the research community due to its applications in several areas of human endeavours. However, the optimal selection of coil wire size and current in the design of Square Air-Core Multi-turn Multilayer Electromagnetic Coil (SAMMEC) with significant wire diameter for both safe and cost-effective products has not been given enough research attention. Therefore, the equation for the flux density produced by a rectangular loop of wire was adopted in the modelling of SAMMEC with significant wire diameter. A coil design chart was constructed based on the developed model and design specifications. Both the feasible and non-feasible design regions and the line of optimum magnetic flux density were identified on the constructed chart. The appropriate wire size and current for the coil were both determined from the design-chart. The diameter, length, resistance, copper loss, and weight of the selected wire for the generation of 0.06 T flux density were found to be 0.00326 m, 267.01 m, 0.5502 Ω, 263.87 W, and 19.86 kg respectively. The selected wire can produce an optimum flux density of 0.066 T with current of 24 Amp and associated copper loss of 316.92 W. Keywords—Air core, Electromagnetic coil, Magnetic flux density, Multilayer, Multi-turn


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Sign in / Sign up

Export Citation Format

Share Document