Effects of Zn, Ge doping on electrochemical migration, oxidation characteristics and corrosion behavior of lead-free Sn-3.0Ag-0.5Cu solder for electronic packaging

Author(s):  
L. Hua ◽  
H. N. Hou ◽  
H.Q. Zhang ◽  
T. Wu ◽  
Y. H. Deng
2010 ◽  
Vol 146-147 ◽  
pp. 953-961 ◽  
Author(s):  
Li Hua ◽  
Gia Kuan Yang ◽  
Hong Quan Zhang

Due to lead-free pressure, Sn-Ag-Cu solder is regarded as the potential candidate. However, higher melting point and faintish soldering restrict its wide application. Metal or rare earth metal doping can improve its soldering. In this thesis, Ge doping in Sn-3.0Ag-0.5Cu (SAC) solder were discussed. Effect of metal Ge doping on electrochemical corrosion behavior of lead-free SAC solder in 3wt.% NaCl solution were investigated by potentiodynamic polarization measurement. The electrochemical migration(ECM)attributed to dendrites growth were employed by the salt immersion experiment, and the oxidation characteristic was researched by thermo gravimetric analysis(TGA). The surface morphology and elemental composition of various elements in the doped solder were determined by analyzing the corrosion product or dendrites formed on the specimen by SEM, EDAX techniques. The results showed that the dendrite growth can be accelerated after Ge doping comparing to Sn-3.0Ag-0.5Cu solder. The shapes of dendrites were completely different before and after Ge doping, the fore looked like as tree leaves, the latter looked like little stem, all dendrites grown from different kind of material can be well differentiated by the help of their fractal dimension. EDAX result showed that the content on dendrites of Sn-3.0Ag-0.5Cu solder doping with Ge were mainly Sn, only little Cl- and Na+. Corrosive experiment showed that the corrosive current density (Icorr) increased with Ge content increasing when the percent content of Ge was less than or equal to 1%, the contrary effect suitable to that Ge doping larger than 1%. TGA result showed that Ge doping could improve the anti-oxidation capacity of SAC solder comparing to no doped solder. It provided a good technical support to develop a new lead-free solder substituting for Sn-37Pb.


Author(s):  
Balint Medgyes ◽  
Sandor Adam ◽  
Lajos Tar ◽  
Vadimas Verdingovas ◽  
Rajan Ambat ◽  
...  

2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000111-000115
Author(s):  
Piers R. Tremlett

A polymer based electronic packaging system has been developed that is capable of operating at temperatures over 175°C and up to 225°C. This system is being developed to be a lead free, non-hermetic and able to deliver miniature or functionally dense circuits. It will be suitable for sensor systems where amplification, signal digitisation and autonomy are important whilst operating in a harsh environment such as high temperature.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Hamoon Azizsoltani ◽  
Achintya Haldar

A novel reliability evaluation procedure of lead-free solders used in electronic packaging (EP) subjected to thermomechanical loading is proposed. A solder ball is represented by finite elements (FEs). Major sources of nonlinearities are incorporated as realistically as practicable. Uncertainties in all design variables are quantified using available information. The thermomechanical loading is represented by five design parameters and uncertainties associated with them are incorporated. Since the performance or limit state function (LSF) of such complicated problem is implicit in nature, it is approximately generated explicitly in the failure region with the help of a completely improved response surface method (RSM)-based approach and the universal Kriging method (KM). The response surface (RS) is generated by conducting as few deterministic nonlinear finite element analyses as possible by integrating several advanced factorial mathematical concepts producing compounding beneficial effect. The accuracy, efficiency, and application potential of the procedure are established with the help of Monte Carlo simulation (MCS) and the results from laboratory investigation reported in the literature. The study conclusively verified the proposed method. Similar studies can be conducted to fill the knowledge gap for cases where the available analytical and experimental studies are limited or extend the information to cases where reliability information is unavailable. The study showcased how reliability information can be extracted with the help of multiple deterministic analyses. The authors believe that they proposed an alternative to the classical MCS technique.


Sign in / Sign up

Export Citation Format

Share Document