Effects of Ge Doping on Electrochemical Migration, Corrosion Behavior and Oxidation Characteristics of Lead-Free Sn-3.0Ag-0.5Cu Solder for Electronic Packaging

2010 ◽  
Vol 146-147 ◽  
pp. 953-961 ◽  
Author(s):  
Li Hua ◽  
Gia Kuan Yang ◽  
Hong Quan Zhang

Due to lead-free pressure, Sn-Ag-Cu solder is regarded as the potential candidate. However, higher melting point and faintish soldering restrict its wide application. Metal or rare earth metal doping can improve its soldering. In this thesis, Ge doping in Sn-3.0Ag-0.5Cu (SAC) solder were discussed. Effect of metal Ge doping on electrochemical corrosion behavior of lead-free SAC solder in 3wt.% NaCl solution were investigated by potentiodynamic polarization measurement. The electrochemical migration(ECM)attributed to dendrites growth were employed by the salt immersion experiment, and the oxidation characteristic was researched by thermo gravimetric analysis(TGA). The surface morphology and elemental composition of various elements in the doped solder were determined by analyzing the corrosion product or dendrites formed on the specimen by SEM, EDAX techniques. The results showed that the dendrite growth can be accelerated after Ge doping comparing to Sn-3.0Ag-0.5Cu solder. The shapes of dendrites were completely different before and after Ge doping, the fore looked like as tree leaves, the latter looked like little stem, all dendrites grown from different kind of material can be well differentiated by the help of their fractal dimension. EDAX result showed that the content on dendrites of Sn-3.0Ag-0.5Cu solder doping with Ge were mainly Sn, only little Cl- and Na+. Corrosive experiment showed that the corrosive current density (Icorr) increased with Ge content increasing when the percent content of Ge was less than or equal to 1%, the contrary effect suitable to that Ge doping larger than 1%. TGA result showed that Ge doping could improve the anti-oxidation capacity of SAC solder comparing to no doped solder. It provided a good technical support to develop a new lead-free solder substituting for Sn-37Pb.

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1386
Author(s):  
Rula M. Allaf ◽  
Mohammad Futian

The present study explores solid-state cryomilling for the compounding of green composites. Herein, wood plastic composites (WPCs) composed of sawdust (SD) and poly(ε-caprolactone) (PCL) with various compositions were prepared. Two compounding techniques, namely, extrusion and cryomilling, were utilized to prepare WPC raw material pellets and powders, respectively, for comparison purposes. Flat pressing was further utilized to prepare WPC films for testing. Morphological, structural, thermal, mechanical, and surface wettability properties were investigated. Results indicate the advantages of cryomilling in producing WPCs. Scanning electron microscopy (SEM) along with optical micrographs revealed well ground SD particles and uniform distribution in the PCL matrix. Tensile strength and elongation at break of the composites declined with increasing SD content, however, the modulus of elasticity significantly increased. Water contact angles averaged less than 90°, implying partial wetting. Visual observations and thermo-gravimetric analysis (TGA) indicated thermal stability of composites during processing. In conclusion, PCL/SD WPC is a potential candidate to replace conventional plastics for packaging applications. This would also provide a much better utilization of the currently undervalued wood waste resources.


2014 ◽  
Vol 07 (04) ◽  
pp. 1450043 ◽  
Author(s):  
Liu Yang ◽  
Qiang Han ◽  
Yong Pan ◽  
Shuya Cao ◽  
Mingyu Ding

Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon–carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between - C = C - and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.


2003 ◽  
Vol 775 ◽  
Author(s):  
G.V.Rama Rao ◽  
Qiang Fu ◽  
Linnea K. Ista ◽  
Huifang Xu ◽  
S. Balamurugan ◽  
...  

AbstractThis study details development of hybrid mesoporous materials in which molecular transport through mesopores can be precisely controlled and reversibly modulated. Mesoporous silica materials formed by surfactant templating were modified by surface initiated atom transfer radical polymerization of poly(N-isopropyl acrylamide) (PNIPAAm) a stimuli responsive polymer (SRP) within the porous network. Thermo gravimetric analysis and FTIR spectroscopy were used to confirm the presence of PNIPAAm on the silica surface. Nitrogen porosimetry, transmission electron microscopy and X-ray diffraction analyses confirmed that polymerization occurred uniformly within the porous network. Uptake and release of fluorescent dyes from the particles was monitored by spectrofluorimetry and scanning laser confocal microscopy. Results suggest that the presence of PNIPAAm, a SRP, in the porous network can be used to modulate the transport of aqueous solutes. At low temperature, (e.g., room temperature) the PNIPAAm is hydrated and extended and inhibits transport of analytes; at higher temperatures (e.g., 50°C) it is hydrophobic and is collapsed within the pore network, thus allowing solute diffusion into or out of the mesoporous silica. The transition form hydrophilic to hydrophobic state on polymer grafted mesoporous membranes was determined by contact angle measurements. This work has implications for the development of materials for the selective control of transport of molecular solutes in a variety of applications.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


2020 ◽  
Vol 13 ◽  
Author(s):  
Inbasekaran S. ◽  
G. Thiyagarajan ◽  
Ramesh C. Panda ◽  
S. Sankar

Background:: Chrome shavings, a bioactive material, are generated from tannery as waste material. These chrome shaving can be used for the preparation of many value-added products. Objective:: One such attempt is made to use these chrome shaving wastes as a composite bio-battery to produce DC voltage, an alternate green energy source and cleaner technology. Methods:: Chrome shavings are hydrolyzed to make collagen paste and mixed with the ferrous nanoparticles of Moringa oleifera leaves and Carbon nanoparticles of Onion peels to form electrolyte paste as base. Then, the electrolyte base was added to the aluminum paste and conducting gel, and mixed well to form composite material for bio-battery. Results:: The composite material of bio-battery has been characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). Series and parallel circuit testing were done using Copper and Zinc electrodes or Carbon and Zinc electrodes as the battery terminals in the electrolyte paste. The surface area of these electrodes needs standardization from bench to pilot scale. The power generated, for an AA battery size, using a single bio-battery cell has produced a DC voltage of 1.5 V; current of 900 mA. Circuit testing on 1 ml of 80 well-cells connected in series has produced DC output of 18 V and 1100 mA whereas 48 V and 1500 mA were obtained from a series-parallel connection. Conclusion:: The glass transition temperature (Tg) of electrolyte of the bio-battery at 53°C indicates that, at this temperature, all the substances present in the bio-battery are well spread and contributing consistently to the electrolyte activity where Fe-C-Nano-Particles were able to form strong chemical bonds on the flanking hydroxyl group sites of the Collagen leading to reduced mobility of polymers and increase Tg. The results instigate promising trends for commercial exploitation of this composite for bio-battery production.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Luqman Ali Shah ◽  
Rida Javed ◽  
Mohammad Siddiq ◽  
Iram BiBi ◽  
Ishrat Jamil ◽  
...  

AbstractThe in-situ stabilization of Ag nanoparticles is carried out by the use of reducing agent and synthesized three different types of hydrogen (anionic, cationic, and neutral) template. The morphology, constitution and thermal stability of the synthesized pure and Ag-entrapped hybrid hydrogels were efficiently confirmed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). The prepared hybrid hydrogels were used in the decolorization of methylene blue (MB) and azo dyes congo red (CR), methyl Orange (MO), and reduction of 4-nitrophenol (4-NP) and nitrobenzene (NB) by an electron donor NaBH4. The kinetics of the reduction reaction was also assessed to determine the activation parameters. The hybrid hydrogen catalysts were recovered by filtration and used continuously up to six times with 98% conversion of pollutants without substantial loss in catalytic activity. It was observed that these types of hydrogel systems can be used for the conversion of pollutants from waste water into useful products.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Arefeh Dehghani Tafti ◽  
Bi Bi Fatemeh Mirjalili ◽  
Abdolhamid Bamoniri ◽  
Naeimeh Salehi

AbstractNano-eggshell/Ti(IV) as a novel naturally based catalyst was prepared, characterized and applied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. The characterization of nano-eggshell/Ti(IV) was performed using Fourier Transform Infrared spectroscopy, X-ray Diffraction, Field Emission Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and Thermo Gravimetric Analysis. Dihydropyrano[2,3-c]pyrazoles were synthesized in the presence of nano-eggshell/Ti(IV) via a four component reaction of aldehydes, ethyl acetoacetate, malononitrile and hydrazine hydrate at room temperature under solvent free conditions. The principal affairs of this procedure are mild condition, short reaction times, easy work-up, high yields, reusability of the catalyst and the absence of toxic organic solvents.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


Sign in / Sign up

Export Citation Format

Share Document