Failure mechanism study of power packages during MSL and temperature cycling test with finite element analysis

Author(s):  
Yongbo Yang ◽  
Dandong Ge ◽  
Wenjie Shen
Author(s):  
Kamran Asim ◽  
Jaewon Lee ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental results. Optical micrographs of the welds in specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The computational results of the finite element analysis indicate that the material inhomogeneity and geometry of the weld bead play an important role in the ductile necking/shear failure mechanism. The computational results match well with the experimental observations of the necking/shear failure and its location. A finite element analysis with consideration of void nucleation and growth based on the Gurson yield function was also carried out. The results of the finite element analysis based on the Gurson yield function are in good agreement with the experimental observations of the initiation of ductile fracture and its location.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jaewon Lee ◽  
Kamran Asim ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental and computational results. Optical micrographs of the welds in the specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The results of the finite element analysis show that the geometry of the weld protrusion and the higher effective stress–plastic strain curves of the heat affected and weld zones result in the necking/shear failure of the load carrying sheet. The deformed shape of the finite element model near the weld matches well with that near a failed weld. A finite element analysis based on the Gurson yield function with consideration of void nucleation and growth was also carried out. The results of the finite element analysis indicate that the location of the material elements with the maximum void volume fraction matches well with that of the initiation of ductile fracture as observed in the experiments.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000123-000133
Author(s):  
Thomas F. Marinis ◽  
Joseph W. Soucy

Abstract Solder coated polymer balls have been successfully employed for attaching packages to circuit boards with minimum standoff height, while accommodating large mismatches in thermal expansion coefficients. Dramatic improvements in temperature cycling performance are often realized by using them in place of solid solder balls, with five-fold increases in mean cycles to failure reported by a number of investigators. The sales literature, provided by suppliers of solder coated solder balls, attribute this superior temperature cycling performance to the soft, compliant polymer core of the product. Our study of the mechanics of solder coated polymer balls has revealed that their stiffness is in fact comparable to that of solid solder balls. Their rigidity results from a composite construction in which a nearly incompressible polymer material is surrounded by a copper shell that is not easily deformed from its spherical shape. We have employed finite element analysis and mechanical measurements to obtain load versus deflection curves for both normal compression and shear displacements of solder coated polymer ball connections. The enhanced temperature cycling performance of solder coated polymer ball connections is also derived from their composite construction. A cross-section through one reveals that near the solder pads, the ratio of copper to polymer is quite high, and consequently so is its resistance to shear. At the mid-plane of the connection, the ratio of copper to polymer is low, which minimizes its shear resistance. Thus, when a solder coated polymer ball connection is subjected to a shear load, as in temperature cycling, most of its deformation occurs around its mid-section. By contrast, when a solid solder ball is subjected to a shear load, most of its deformation occurs near its attachment pads, where its cross-sectional area and hence its stiffness are minimal. In either type of attachment, failure occurs when sufficient plastic strain damage accumulates in the solder to initiate a fracture. By distributing its shear strain over its midsection, a solder coated polymer ball minimizes plastic strain in its solder, where as a solder ball concentrates it near its bond pads. We have used finite element analysis to compute the cumulative plastic strain in various solder coated polymer ball assemblies subjected to cyclic shear loading induced by thermal excursions. By combining these results with an Engelmaier solder fatigue model, we predicted mean number of temperature cycles to failure of the solder connections. Our results compare favorably with published experimental data from temperature cycle tests. We have employed this analysis technique to examine how fatigue life is impacted by various connection parameters such as package size, stand-off height and solder composition, as well as those specific to solder coated polymer balls, which include size and mechanical properties of the core and ratios of solder and copper thicknesses to core diameter. Our overall objective is to enable design of complex stacked assemblies of multichip modules that meet customer reliability requirements for various use environments.


Sign in / Sign up

Export Citation Format

Share Document