Effect of cost reduction in power sources on large-scale penetration of wind and solar power in Hokkaido

Author(s):  
Kengo Suzuki ◽  
Naoya Takahashi ◽  
Yutaka Tabe ◽  
Takemi Chikahisa
Author(s):  
Gregory J. Kolb ◽  
Roger Davenport ◽  
David Gorman ◽  
Ron Lumia ◽  
Robert Thomas ◽  
...  

Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute ∼50% to the capital cost of the plant it is important to reduce the cost of heliostats to as low as possible to improve the economic viability of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m2 given year 2006 materials and labor costs. We also propose R&D that should ultimately lead to a price of less than $100/m2. Approximately 30 heliostat and manufacturing experts from the USA, Europe, and Australia contributed to the content of this report during 2 workshops conducted at the National Solar Thermal Test Facility.


2014 ◽  
Vol 670-671 ◽  
pp. 964-967
Author(s):  
Shu Hua Bai ◽  
Hai Dong Yang

Nowadays, energy crisis is becoming increasingly serious. Coal, petroleum, natural gas and other fossil energy tend to be exhausted due to the crazy exploration. In recent decades, several long lasting local wars broke out in large scale in Mideast and North Africa because of the fighting for the limited petroleum. The reusable green energy in our life like enormous wind power, solar power, etc is to become the essential energy. This article is to conduct a comparative exploration of mini wind turbine, with the purpose of finding a good way to effectively deal with the energy crisis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md Al Mahadi Hasan ◽  
Yuanhao Wang ◽  
Chris R. Bowen ◽  
Ya Yang

AbstractThe development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sara Benyakhlef ◽  
Ahmed Al Mers ◽  
Ossama Merroun ◽  
Abdelfattah Bouatem ◽  
Hamid Ajdad ◽  
...  

Reducing levelized electricity costs of concentrated solar power (CSP) plants can be of great potential in accelerating the market penetration of these sustainable technologies. Linear Fresnel reflectors (LFRs) are one of these CSP technologies that may potentially contribute to such cost reduction. However, due to very little previous research, LFRs are considered as a low efficiency technology. In this type of solar collectors, there is a variety of design approaches when it comes to optimizing such systems. The present paper aims to tackle a new research axis based on variability study of heliostat curvature as an approach for optimizing small and large-scale LFRs. Numerical investigations based on a ray tracing model have demonstrated that LFR constructors should adopt a uniform curvature for small-scale LFRs and a variable curvature per row for large-scale LFRs. Better optical performances were obtained for LFRs regarding these adopted curvature types. An optimization approach based on the use of uniform heliostat curvature for small-scale LFRs has led to a system cost reduction by means of reducing its receiver surface and height.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 456-458
Author(s):  
Tetsuo Kusakabe

Sharp Corporation is making a concerted effort to reduce environmental impacts to the greatest extent possible at its production facilities around the world, and it is applying its own original evaluation criteria to recognize those plants having an extremely high level of environmental performance as “SuperGreen Factories.”Our Kameyama plant, the frst such factory to be so recognized, is an integrated, start-to-fnish production facility for liquid-crystal display (LCD) televisions (TVs), from fabricating the LCD panel to assembling the fnished TV set (see Table I). Given that large amounts of energy are consumed to operate production equipment and to power air conditioning, we focused particular attention on environmental measures intended to reduce global warming and introduced an energy supply system that combines environmental friendliness and operational stability. As shown in Figure 1, this system is based on integrating different types of large-scale distributed power sources and consists of a gas-fred cogeneration system, a fuel cell system, and a photovoltaic power generating system. The power output of this system covers about one-third of the total electrical needs of the plant.


Author(s):  
Raffaele Capuano ◽  
Thomas Fend ◽  
Bernhard Hoffschmidt ◽  
Robert Pitz-Paal

Due to the continuous global increase in energy demand, Concentrated Solar Power (CSP) represents an excellent alternative, or add-on to existing systems for the production of energy on a large scale. In some of these systems, the Solar Power Tower plants (SPT), the conversion of solar radiation into heat occurs in certain components defined as solar receivers, placed in correspondence of the focus of the reflected sunlight. In a particular type of solar receivers, defined as volumetric, the use of porous materials is foreseen. These receivers are characterized by a porous structure called absorber. The latter, hit by the reflected solar radiation, transfers the heat to the evolving fluid, generally air subject to natural convection. The proper design of these elements is essential in order to achieve high efficiencies, making such structures extremely beneficial for the overall performances of the energy production process. In the following study, a parametric analysis and an optimized characterization of the structure have been performed with the use of self-developed numerical models. The knowledge and results gained through this study have been used to define an optimization path in order to improve the absorber microstructure, starting from the current in-house state-of-the-art technology until obtaining a new advanced geometry.


2019 ◽  
Vol 48 ◽  
pp. 43-58 ◽  
Author(s):  
Ahmed Aly ◽  
Magda Moner-Girona ◽  
Sándor Szabó ◽  
Anders Branth Pedersen ◽  
Steen Solvang Jensen
Keyword(s):  

2021 ◽  
Vol 294 ◽  
pp. 01002
Author(s):  
Xiaoyan Xiang ◽  
Yao Sun ◽  
Xiaofei Deng

Solar energy in nature is irregular, so photovoltaic (PV) power performance is intermittent, and highly dependent on solar radiation, temperature and other meteorological parameters. Accurately predicting solar power to ensure the economic operation of micro-grids (MG) and smart grids is an important challenge to improve the large-scale application of PV to traditional power systems. In this paper, a hybrid machine learning algorithm is proposed to predict solar power accurately, and Persistence Extreme Learning Machine(P-ELM) algorithm is used to train the system. The input parameters are the temperature, sunshine and solar power output at the time of i, and the output parameters are the temperature, sunshine and solar power output at the time i+1. The proposed method can realize the prediction of solar power output 20 minutes in advance. Mean absolute error (MAE) and root-mean-square error (RMSE) are used to characterize the performance of P-ELM algorithm, and compared with ELM algorithm. The results show that the accuracy of P-ELM algorithm is better in short-term prediction, and P-ELM algorithm is very suitable for real-time solar energy prediction accuracy and reliability.


2021 ◽  
Vol 6 ◽  
pp. 8
Author(s):  
Amale Laaroussi ◽  
Abdelghrani Bouayad ◽  
Zakaria Lissaneddine ◽  
Lalla Amina Alaoui

Morocco is one of the countries investing more and more in Renewable Energy (RE) technologies to meet the growing demand for energy and ensure the security of supply in this sector. The number of solar projects planned and implemented, as well as solar thermal projects in the form of Concentrating Solar Power (CSP) installations is steadily increasing. Many of these installations are designed as large utility systems. In order to provide strong evidence on local, regional and even national impacts, this article examines the impacts of large-scale renewable energy projects on territorial development, based on a case study of the NOOR 1 (Concentrated Solar Power (CSP)) project in Ouarzazate, Morocco. The data collected during this study, conducted through semi-structured interviews with experts, stakeholders, local community representatives and combined with an analysis of documents provided by the NOOR 1 project managers, investors and consulting firms specialized in the field of Renewable Energy, provide detailed evidence on the type and magnitude of impacts on the economic development of the Moroccan southern region where the NOOR 1 plant is located. The data collected is analyzed using NVIVO software. The study results in a consolidated list of many impacts with varying levels of significance for different stakeholder groups, including farmers, youth, women, community representatives and small and medium firms owners. It should be noted that the importance of analyzing the economic impact of large infrastructure projects is widely recognized, but so far, there is little published in the academic and professional literature on the potential impacts of these projects at the local level. Even less information is available on the local impacts of large-scale project implementation in Morocco. While many macroeconomic studies have fed the recent surge in investment in RE projects with the promise of multiple social, economic, environmental, and even geopolitical benefits at the macro level, public debates and discussions have raised considerable doubts. The question of whether these promises would also leave their marks at the local level has also arisen. Despite these uncertainties, very few academics and practitioners have conducted research to empirically develop a good understanding of the impact of RE projects at the local level. To fill this research gap, the economic impact analysis of NOOR 1 provides a detailed empirical overview, which allows a better understanding of the effects that the infrastructure developments of Concentrated Solar Power (CSP) plants can have on the economic environment in which they are located.


Sign in / Sign up

Export Citation Format

Share Document