An Approach to Measuring the Effects of Surface Steps on Transition Using a Propelled-Model

Author(s):  
Anne M. Bender ◽  
Aaron Drake ◽  
Vernecia S. McKay ◽  
Russell V. Westphal ◽  
Shuya Yoshioka ◽  
...  
Keyword(s):  
Author(s):  
D. A. Smith

The nucleation and growth processes which lead to the formation of a thin film are particularly amenable to investigation by transmission electron microscopy either in situ or subsequent to deposition. In situ studies have enabled the observation of island nucleation and growth, together with addition of atoms to surface steps. This paper is concerned with post-deposition crystallization of amorphous alloys. It will be argued that the processes occurring during low temperature deposition of one component systems are related but the evidence is mainly indirect. Amorphous films result when the deposition conditions such as low temperature or the presence of impurities (intentional or unintentional) preclude the atomic mobility necessary for crystallization. Representative examples of this behavior are CVD silicon grown below about 670°C, metalloids, such as antimony deposited at room temperature, binary alloys or compounds such as Cu-Ag or Cr O2, respectively. Elemental metals are not stable in the amorphous state.


Author(s):  
Simon King ◽  
C. Barry Carter

Surface-steps formed during the cleavage of MgO on {100} planes, the smaller steps of which may be of atomic height, have been observed in Reflection-Electron Microscopy investigations to be accurately aligned along <001> directions. Steps of atomic height also have been identified on MgO smoke-particle platelets; these steps may be curved or straight, with the straight steps showing evidence for faceting along <001>. Reference also is made to faceting along <011> and <012> directions. Straight steps ∼2 unit cells high, with edges along <100> also have been imaged by High-Resolution Profile-Imaging at the peripheries of MgO smoke microcubes. After etching in aqua-regia and annealing in air, however, high densities of “large” steps several unit cells high, as well as numerous holes, are formed. It is faceting in these foils that is reported here.As can be seen in fig 1, obvious faceting of the surface-step traces is extremely rare in these foils, in marked contrast to substrates such as LaAlO3 and SrTiO3, on which surface-step traces facet readily after a similar preparation treatment.


Author(s):  
Feng Tsai ◽  
J. M. Cowley

Reflection electron microscopy (REM) has been used to study surface defects such as surface steps, dislocations emerging on crystal surfaces, and surface reconstructions. However, only a few REM studies have been reported about the planar defects emerging on surfaces. The interaction of planar defects with surfaces may be of considerable practical importance but so far there seems to be only one relatively simple theoretical treatment of the REM contrast and very little experimental evidence to support its predications. Recently, intersections of both 90° and 180° ferroelectric domain boundaries with BaTiO3 crystal surfaces have been investigated by Tsai and Cowley with REM.The REM observations of several planar defects, such as stacking faults and domain boundaries have been continued by the present authors. All REM observations are performed on a JEM-2000FX transmission electron microscope. The sample preparations may be seen somewhere else. In REM, the incident electron beam strikes the surface of a crystal with a small glancing angle.


Author(s):  
Mohan Krishnamurthy ◽  
Jeff S. Drucker ◽  
John A. Venablest

Secondary Electron Imaging (SEI) has become a useful mode of studying surfaces in SEM[1] and STEM[2,3] instruments. Samples have been biassed (b-SEI) to provide increased sensitivity to topographic and thin film deposits in ultra high vacuum (UHV)-SEM[1,4]; but this has not generally been done in previous STEM studies. The recently developed UHV-STEM ( codenamed MIDAS) at ASU has efficient collection of secondary electrons using a 'parallelizer' and full sample preparation system[5]. Here we report in-situ deposition and annealing studies on the Ge/Si(100) epitaxial system, and the observation of surface steps on vicinal Si(100) using b-SEI under UHV conditions in MIDAS.Epitaxial crystal growth has previously been studied using SEM and SAM based experiments [4]. The influence of surface defects such as steps on epitaxial growth requires study with high spatial resolution, which we report for the Ge/Si(100) system. Ge grows on Si(100) in the Stranski-Krastonov growth mode wherein it forms pseudomorphic layers for the first 3-4 ML (critical thickness) and beyond which it clusters into islands[6]. In the present experiment, Ge was deposited onto clean Si(100) substrates misoriented 1° and 5° toward <110>. This was done using a mini MBE Knudsen cell at base pressure ~ 5×10-11 mbar and at typical rates of 0.1ML/min (1ML =0.14nm). Depositions just above the critical thickness were done for substrates kept at room temperature, 375°C and 525°C. The R T deposits were annealed at 375°C and 525°C for various times. Detailed studies were done of the initial stages of clustering into very fine (∼1nm) Ge islands and their subsequent coarsening and facetting with longer anneals. From the particle size distributions as a function of time and temperature, useful film growth parameters have been obtained. Fig. 1 shows a b-SE image of Ge island size distribution for a R T deposit and anneal at 525°C. Fig.2(a) shows the distribution for a deposition at 375°C and Fig.2(b) shows at a higher magnification a large facetted island of Ge. Fig.3 shows a distribution of very fine islands from a 525°C deposition. A strong contrast is obtained from these islands which are at most a few ML thick and mottled structure can be seen in the background between the islands, especially in Fig.2(a) and Fig.3.


Author(s):  
Sumio Iijima ◽  
Tung Hsu

Suppose the thickness of a thin film of a crystal varies periodically like a regular array of surface steps, kinematical intensities of diffracted waves from this crystal are modulated by a shape transform,


Nanoscale ◽  
2019 ◽  
Vol 11 (44) ◽  
pp. 21147-21154 ◽  
Author(s):  
Raymond W. Friddle ◽  
Konrad Thürmer

Video microscopy and AFM are used to relate surface topography to a mineral's ability to promote ice growth. On feldspar, abundant as atmospheric dust, basic surface steps can facilitate condensation and freezing when air becomes saturated.


2020 ◽  
Vol 1004 ◽  
pp. 145-152
Author(s):  
Kaori Seino ◽  
Atsushi Oshiyama

We have performed density-functional calculations in order to clarify atomic structures and energetics of surface steps on SiC. The obtained energetics of distinct step types on vicinal 3C-SiC(111) surfaces which correspond to 4H- and 6H-SiC(0001) surfaces reveals the atom-scale reason for the experimental observation in the past that the step morphology is straight for the SiC(0001) surfaces inclined toward the 〈1-100〉 direction while it is meandering for the 〈11-20〉 inclined surfaces. The calculations clarify the rebonding between upper- and lower-terrace edge atoms, which is decisive for the energetics of the atomic steps.


1999 ◽  
Vol 587 ◽  
Author(s):  
Kazumasa Narumi ◽  
Shunya Yamamoto ◽  
Hiroshi Naramoto

AbstractsVariation of surface steps on sapphire (0001) and (1120) substrates processed with thermal annealing in air or a reducing environment at 1000 to 1400°C for 1 to 10 hours were investigated with an atomic force microscope (AFM). The annealed (0001) surfaces consist of atomically smooth and large terraces and atomic-height steps, whose configurations strongly depend on annealing conditions. On the (1120) surfaces, where crystallographic misorientation is almost an order of magnitude larger than that of the (0001) surfaces, step height and terraces increase in size with the longer annealing time and higher annealing temperature. Characteristic step figures due to the symmetry of atomic arrangement were observed on the (0001) surface.


2008 ◽  
Vol 1090 ◽  
Author(s):  
Mark E. Twigg ◽  
Yoosuf N. Picard ◽  
Nabil D. Bassim ◽  
Joshua D. Caldwell ◽  
Michael A. Mastro ◽  
...  

AbstractUsing transmission electron microscopy, we have analyzed dislocations in AlN nucleation layers and GaN films grown by metallorganic chemical vapor deposition (MOCVD) on the (0001) surface of epitaxially-grown 4H-SiC mesas with and without steps. For 4H-SiC substrates free of SiC surface steps, half-loop nucleation and glide parallel to the AlN/SiC interfacial plane play the dominant role in strain relief, with no mechanism for generating threading dislocations. In contrast, 4H-SiC mesa surfaces with steps give rise to regions of high stress at the heteroepitaxial interface, thereby providing an environment conducive to the nucleation and growth of threading dislocations, which act to accommodate misfit strain by the tilting of threading edge dislocations.


1997 ◽  
Vol 04 (03) ◽  
pp. 559-566 ◽  
Author(s):  
J. M. GIBSON ◽  
X. CHEN ◽  
O. POHLAND

Transmission electron microscopy is uniquely able to extend techniques for imaging free surface steps to the buried interface regime, without significant loss of detail. Two mechanisms for imaging surface and interfacial steps by transmission electron microscopy are described. They are thickness contrast and strain contrast. The former reveals the position and approximate height of steps, whereas the latter detects stress fields which are commonly associated with steps. The basis for each of these methods is elaborated, and preliminary results are shown for step images at Si/SiO2 interfaces, where measurable stress fields have been directly detected for the first time.


Sign in / Sign up

Export Citation Format

Share Document