Surface defects inspection of cold rolled strips based on neural network

Author(s):  
Ge-Wen Kang ◽  
Hong-Bing Liu
2013 ◽  
Vol 13 (4) ◽  
pp. 103-106 ◽  
Author(s):  
S.J. Świłło ◽  
M. Perzyk

Abstract The paper presents a vision based approach and neural network techniques in surface defects inspection and categorization. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks and pores that greatly influence the material’s properties Since the human visual inspection for the surface is slow and expensive, a computer vision system is an alternative solution for the online inspection. The authors present the developed vision system uses an advanced image processing algorithm based on modified Laplacian of Gaussian edge detection method and advanced lighting system. The defect inspection algorithm consists of several parameters that allow the user to specify the sensitivity level at which he can accept the defects in the casting. In addition to the developed image processing algorithm and vision system apparatus, an advanced learning process has been developed, based on neural network techniques. Finally, as an example three groups of defects were investigated demonstrates automatic selection and categorization of the measured defects, such as blowholes, shrinkage porosity and shrinkage cavity.


2013 ◽  
Vol 712-715 ◽  
pp. 2323-2326
Author(s):  
Xing Guang Qi ◽  
Hai Lun Zhang ◽  
Xiao Ting Li

This paper presents an on-line surface defects detection system based on machine vision, which has high speed architecture and can perform high accurate detection for cold-rolled aluminum plate. The system consists of high speed camera and industrial personal computer (IPC) array which connected through Gigabit Ethernet, achieved seamless detection by redundant control. In order to acquire high processing speed, single IPC as processor receives from and deals with only one or two cameras' image. Experimental results show that the system with high accurate detection capability can satisfy the requirement of real time detection and find out the defects on the production line effectively.


2015 ◽  
Vol 1095 ◽  
pp. 786-794
Author(s):  
A.B. Naizabekov ◽  
V.A. Talmazan ◽  
S.N. Lezhnev ◽  
E.A Panin ◽  
А.S. Erzhanov ◽  
...  

Used the influence of technological factors of the rolling process on the intensity of the rolling out of the defect to determine the value of deformation and the coefficient of use of the plasticity resource. Introduced the notion of residual coefficient of plasticity resource in the second stage of transformation of the defect. Found that the causes of deterioration of the quality of cold-rolled sheet can be numerous defects of mechanical origin, caused by mechanical damage of the sheet surface. Conducted an analysis of profiles rolling modes, rolled on the mill 1700. With the use of existing methods calculated DUPR on workshop modes of rolling of specified profiles with and without considering the surface defects. Carried an optimization of the modes of strip rolling with surface defects.


Author(s):  
Ranganath Singari ◽  
Karun Singla ◽  
Gangesh Chawla

Deep learning has offered new avenues in the field of industrial management. Traditional methods of quality inspection such as Acceptance Sampling relies on a probabilistic measure derived from inspecting a sample of finished products. Evaluating a fixed number of products to derive the quality level for the complete batch is not a robust approach. Visual inspection solutions based on deep learning can be employed in the large manufacturing units to improve the quality inspection units for steel surface defect detection. This leads to optimization of the human capital due to reduction in manual intervention and turnaround time in the overall supply chain of the industry. Consequently, the sample size in the Acceptance sampling can be increased with minimal effort vis-à-vis an increase in the overall accuracy of the inspection. The learning curve of this work is supported by Convolutional Neural Network which has been used to extract feature representations from grayscale images to classify theinputs into six types of surface defects. The neural network architecture is compiled in Keras framework using Tensorflow backend with state of the art Adam RMS Prop with Nesterov Momentum (NADAM) optimizer. The proposed classification algorithm holds the potential to identify the dominant flaws in the manufacturing system responsible for leaking costs.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


2020 ◽  
Vol 10 (3) ◽  
pp. 972 ◽  
Author(s):  
Jinsong Zhu ◽  
Jinbo Song

This paper mainly improves the visual geometry group network-16 (VGG-16), which is a classic convolutional neural network (CNN), to classify the surface defects on cement concrete bridges in an accurate manner. Specifically, the number of fully connected layers was reduced by one, and the Softmax classifier was replaced with a Softmax classification layer with seven defect tags. The weight parameters of convolutional and pooling layers were shared in the pre-trained model, and the rectified linear unit (ReLU) function was taken as the activation function. The original images were collected by a road inspection vehicle driving across bridges on national and provincial highways in Jiangxi Province, China. The images on surface defects of cement concrete bridges were selected, and divided into a training set and a test set, and preprocessed through morphology-based weight adaptive denoising. To verify its performance, the improved VGG-16 was compared with traditional shallow neural networks (NNs) like the backpropagation neural network (BPNN), support vector machine (SVM), and deep CNNs like AlexNet, GoogLeNet, and ResNet on the same sample dataset of surface defects on cement concrete bridges. Judging by mean detection accuracy and top-5 accuracy, our model outperformed all the contrastive methods, and accurately differentiated between images with seven classes of defects such as normal, cracks, fracturing, plate fracturing, corner rupturing, edge/corner exfoliation, skeleton exposure, and repairs. The results indicate that our model can effectively extract the multi-layer features from surface defect images, which highlights the edges and textures. The research findings shed important new light on the detection of surface defects and classification of defect images.


Sign in / Sign up

Export Citation Format

Share Document