Computational Modeling of Co2 Decomposition by Concentrated Solar Energy – Enhanced Microwave Plasma

Author(s):  
Rasool Elahi ◽  
Juan P. Trelles
2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


Author(s):  
S. Kh. Suleimanov ◽  
V. G. Babashov ◽  
M. U. Dzhanklich ◽  
V. G. Dyskin ◽  
M. I. Daskovskii ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 723
Author(s):  
Mahesh Muraleedharan Nair ◽  
Stéphane Abanades

The CeO2/CeO2−δ redox system occupies a unique position as an oxygen carrier in chemical looping processes for producing solar fuels, using concentrated solar energy. The two-step thermochemical ceria-based cycle for the production of synthesis gas from methane and solar energy, followed by CO2 splitting, was considered in this work. This topic concerns one of the emerging and most promising processes for the recycling and valorization of anthropogenic greenhouse gas emissions. The development of redox-active catalysts with enhanced efficiency for solar thermochemical fuel production and CO2 conversion is a highly demanding and challenging topic. The determination of redox reaction kinetics is crucial for process design and optimization. In this study, the solid-state redox kinetics of CeO2 in the two-step process with CH4 as the reducing agent and CO2 as the oxidizing agent was investigated in an original prototype solar thermogravimetric reactor equipped with a parabolic dish solar concentrator. In particular, the ceria reduction and re-oxidation reactions were carried out under isothermal conditions. Several solid-state kinetic models based on reaction order, nucleation, shrinking core, and diffusion were utilized for deducing the reaction mechanisms. It was observed that both ceria reduction with CH4 and re-oxidation with CO2 were best represented by a 2D nucleation and nuclei growth model under the applied conditions. The kinetic models exhibiting the best agreement with the experimental reaction data were used to estimate the kinetic parameters. The values of apparent activation energies (~80 kJ·mol−1 for reduction and ~10 kJ·mol−1 for re-oxidation) and pre-exponential factors (~2–9 s−1 for reduction and ~123–253 s−1 for re-oxidation) were obtained from the Arrhenius plots.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.


1999 ◽  
Vol 121 (1) ◽  
pp. 36-39 ◽  
Author(s):  
A. Ferriere ◽  
C. Faillat ◽  
S. Galasso ◽  
L. Barrallier ◽  
J-E. Masse

A recent French contribution in the field of surface hardening of steel using concentrated solar energy is presented. Single spot and continuous scanning processes have been investigated in a small-scale solar furnace. Hardened regions of 0.5–1.5 mm in thickness have been obtained on specimens of carbon steel, resulting from the transformation hardening process. Compressive stresses are induced in the thermally affected layer, without tensile peak in the bulk.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 611 ◽  
Author(s):  
Anita Haeussler ◽  
Stéphane Abanades ◽  
Julien Jouannaux ◽  
Anne Julbe

Due to the requirement to develop carbon-free energy, solar energy conversion into chemical energy carriers is a promising solution. Thermochemical fuel production cycles are particularly interesting because they can convert carbon dioxide or water into CO or H2 with concentrated solar energy as a high-temperature process heat source. This process further valorizes and upgrades carbon dioxide into valuable and storable fuels. Development of redox active catalysts is the key challenge for the success of thermochemical cycles for solar-driven H2O and CO2 splitting. Ultimately, the achievement of economically viable solar fuel production relies on increasing the attainable solar-to-fuel energy conversion efficiency. This necessitates the discovery of novel redox-active and thermally-stable materials able to split H2O and CO2 with both high-fuel productivities and chemical conversion rates. Perovskites have recently emerged as promising reactive materials for this application as they feature high non-stoichiometric oxygen exchange capacities and diffusion rates while maintaining their crystallographic structure during cycling over a wide range of operating conditions and reduction extents. This paper provides an overview of the best performing perovskite formulations considered in recent studies, with special focus on their non-stoichiometry extent, their ability to produce solar fuel with high yield and performance stability, and the different methods developed to study the reaction kinetics.


2019 ◽  
Vol 56 (1) ◽  
pp. 261-270
Author(s):  
Maria Stoicanescu ◽  
Aurel Crisan ◽  
Ioan Milosan ◽  
Mihai Alin Pop ◽  
Jose Rodriguez Garcia ◽  
...  

This paper presents and discusses research conducted with the purpose of developing the use of solar energy in the heat treatment of steels. For this, a vertical axis solar furnace called at Plataforma Solar de Almeria was adapted such as to allow control of the heating and cooling processes of samples made from 1.1730 steel. Thus temperature variation in pre-set points of the heated samples could be monitored in correlation with the working parameters: the level of solar radiation and implicitly the energy used the conditions of sample exposed to solar radiation, and the various protections and cooling mediums.The recorded data allowed establishing the types of treatments applied for certain working conditions. The distribution of hardness, as the representative feature resulting from heat treatment, was analysed on all sides of the treated samples. In correlation with the time-temperature-transformation diagram of 1.1730 steel, the measured values confirmed the possibility of using solar energy in all types of heat treatment applied to this steel. In parallel the efficiency of using solar energy was analysed in comparison to the energy obtained by burning methane gas for the heat treatment for the same set of samples. The analysis considered energy consumption, productivity and the impact on the environment. Thanks to various data obtained through developed experiences, which cover a wide range of thermic treatments applied steels 1.1730 model, we can certainly state that this can be a solid base in using solar energy in applications of thermic treatment at a high industrial level.


2016 ◽  
Author(s):  
Julius E. Yellowhair ◽  
Hoyeong Kwon ◽  
Andrea Alu ◽  
Robert L. Jarecki ◽  
Subhash L. Shinde

Sign in / Sign up

Export Citation Format

Share Document