Performance comparison of phase shifting surface lens antenna with other lens antennas

Author(s):  
Neha Singh ◽  
Carnal Kishor Choure ◽  
Machin Chauhan ◽  
Harshavardhan Singh
2010 ◽  
Vol 46 (5) ◽  
pp. 327 ◽  
Author(s):  
N. Gagnon ◽  
A. Petosa ◽  
D.A. McNamara
Keyword(s):  

2004 ◽  
Author(s):  
Rainer Pforr ◽  
Mario Hennig ◽  
Roderick Koehle ◽  
Nicolo Morgana ◽  
Joerg Thiele ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Phan Van Hung ◽  
Nguyen Quoc Dinh ◽  
Yoshihide Yamada ◽  
Naobumi Michishita ◽  
Mohammad Tariqul Islam

Lens antennas with multibeam, high gain, and low sidelobe level are potential candidates for base station antennas in 5G mobile communication. In this paper, the authors perform simulation and parametric analysis of a lens antenna with positive and negative refractive indexes (NRI) using the modern electromagnetic field simulation software ANSYS HFSS. The simulation results of structures and theoretical calculations are analyzed and compared. The simulation results show the effectiveness of using negative refractive index lens antennas to minimize the dimension. The lens thickness with a negative refractive index decreased from 24.5 mm to 6.1 mm compared to the positive refractive index lens’s thickness. The results also indicate the similarities in gain, sidelobe level, amplitude, and electric field distribution on the aperture plane of the negative and positive refractive indexes (PRI) lens antennas compared to the theoretical calculation. In addition, the authors simulate a lens structure with additional quarter wavelength matching layers (MLs) to estimate the antireflection performance.


2021 ◽  
Author(s):  
Saeideh Shad

Millimeter wave (mmWave) communication systems have attracted significant interest regarding supporting high data rate of Gigabit/s communications for the new generation of wireless communication networks. MmWave communication systems have frequency ranges in between 30 and 300 GHz wherein an enormous amount of unused bandwidth is available. Although the available bandwidth of mmWave frequencies is promising for high data rate communications, the propagation characteristics of mmWave frequencies are significantly different from microwave frequency band in terms of path loss, diffraction and blockage, and atmospheric absorption. In general, the overall losses of mmWave signals are significantly larger than that of microwave signals in point-to-point wireless communications. To compensate the high propagation losses, due to the limited output power that the current RF active components can deliver in millimeter waves, the use of directional and beam-steerable antennas become necessary in mmWave wireless systems. The use of directional antennas can effectively alleviate the signal interference in mmWave communications. High-gain directional antennas can be used at both the transmitting and receiving ends, resulting in a significantly enhanced Signal-to-Noise ratio (SNR) and improved data security, and can be used in long-range mmWave point-to-point communications. Moreover, directional antenna beams with limited spatial coverage need to be steered either electronically or mechanically to obtain a better substitute link for non-Line of Loss (LOS) communications. Therefore, this dissertation mainly focuses on antenna design for mmWave frequency band applications. High gain and beam-steerable antennas with the merits of low profile, high gain, high efficiency and low cost are studied to address the new challenges of high frequency band antennas. First, waveguide-based technology is employed to propose a new wideband high gain antenna for 60 GHz band applications. Then, for beam-steerable antenna applications to steer the antenna beam in a specific direction, different structures of cylindrical lens antennas are studied. First, a compact two-dimensional lens antenna is designed and proposed at 28 GHz, and then a possible design of a wideband beam-steerable lens antenna is discussed and presented. Finally, a fully metallic wideband metasurface-based lens antenna is explored. The antenna is realized based on an array of periodic unit-cells to reduce the loss of the dielectric part in the conventional lens antennas. This property is exploited to design wideband cost-effective fully metallic antenna at mmWave frequencies.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 538
Author(s):  
Bora Seo ◽  
Inseop Yoon ◽  
Jungsuek Oh

This paper presents a practical design consideration for the dielectric lens based on Huygens’ principle (HP) at a short distance (=λ0/2) from a feed antenna to overcome the limitation of the conventional design method. It is suggested that certain ranges of dielectric thickness values are not considered to exclude undesired resonant effects that hamper the effectiveness of Huygens’ lens which relies on phase shifting elements. In the proposed HP-based design method, phase distributions are captured at the target distance away from the feed array for the two cases of 2 × 2 and 1 × 4 array antennas and based on these, the proposed lens topology is designed to compensate the phase distributions for gain enhancement. A case study shows that the proposed HP-based design approach considering the actual phase information and undesired dielectric resonant phenomenology can achieve a gain enhancement of up to 5.34 dB compared to the conventional dielectric lens, depending on the feed array arrangement that can render circular or elliptic shapes of phase distributions for radiated fields.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5849 ◽  
Author(s):  
Farizah Ansarudin ◽  
Tharek Abd Rahman ◽  
Yoshihide Yamada ◽  
Nurul Huda Abd Rahman ◽  
Kamilia Kamardin

In the 5G mobile system, new features such as millimetre wave operation, small cell size and multi beam are requested at base stations. At millimetre wave, the base station antennas become very small in size, which is about 30 cm; thus, dielectric lens antennas that have excellent multi beam radiation pattern performance are suitable candidates. For base station application, the lens antennas with small thickness and small curvature are requested for light weight and ease of installation. In this paper, a new lens shaping method for thin and small lens curvature is proposed. In order to develop the thin lens antenna, comparisons of antenna structures with conventional aperture distribution lens and Abbe’s sine lens are made. Moreover, multi beam radiation pattern of three types of lenses are compared. As a result, the thin and small curvature of the proposed lens and an excellent multi beam radiation pattern are ensured.


2019 ◽  
pp. 53-59
Author(s):  
Yu. S. Nikulina

An algorithm is proposed that makes it possible to calculate the coefficients of power polynomials approximating the illuminated and shadow surfaces of bifocal lens antennas. The algorithm is based on providing equality of electrical lengths of rays passing from the focus points through lens body and its edge and on the assumption that the phase front is flat and is inclined at a determined angle relative to the main optical axis of the lens on the aperture of the lens antenna. For each of the rays an expression was written that determines its electrical length. The electrical length of the rays depends on the points coordinates of the illuminated and shadow surface of the lens, in which they are refracted. The analytical solution of the obtained equation is difficult. Therefore, it is proposed to determine the exact coordinate values by numerical methods. The proposed algorithm determines in series the three points lying on the illuminated and shadow surfaces. The coordinates of the points are used to form systems of equations whose solutions are the coefficients of power polynomials approximating the illuminated and shadow surfaces of the lens antenna. The algorithm does not impose restrictions on the relative dielectric constant of the material from which the lens antenna is made.


Sign in / Sign up

Export Citation Format

Share Document