A case study of CDMA and PCS-1900 using the GRANET/sup TM/ radio planning tool

Author(s):  
D. Fagen ◽  
A. Aksu ◽  
A. Giordano
Keyword(s):  
2020 ◽  
Vol 10 (24) ◽  
pp. 8853
Author(s):  
Pavel Seda ◽  
Milos Seda ◽  
Jiri Hosek

The need to optimize the deployment and maintenance costs for service delivery in wireless networks is an essential task for each service provider. The goal of this paper was to optimize the number of service centres (gNodeB) to cover selected customer locations based on the given requirements. This optimization need is especially emerging in emerging 5G and beyond cellular systems that are characterized by a large number of simultaneously connected devices, which is typically difficult to handle by the existing wireless systems. Currently, the network infrastructure planning tools used in the industry include Atoll Radio Planning Tool, RadioPlanner and others. These tools do not provide an automatic selection of a deployment position for specific gNodeB nodes in a given area with defined requirements. To design a network with those tools, a great deal of manual tasks that could be reduced by more sophisticated solutions are required. For that reason, our goal here and our main contribution of this paper were the development of new mathematical models that fit the currently emerging scenarios of wireless network deployment and maintenance. Next, we also provide the design and implementation of a verification methodology for these models through provided simulations. For the performance evaluation of the models, we utilize test datasets and discuss a case study scenario from a selected district in Central Europe.


2021 ◽  
Vol 13 (11) ◽  
pp. 6099
Author(s):  
Giovanna Adinolfi ◽  
Roberto Ciavarella ◽  
Giorgio Graditi ◽  
Antonio Ricca ◽  
Maria Valenti

Integration of DC grids into AC networks will realize hybrid AC/DC grids, a new energetic paradigm which will become widespread in the future due to the increasing availability of DC-based generators, loads and storage systems. Furthermore, the huge connection of intermittent renewable sources to distribution grids could cause security and congestion issues affecting line behaviour and reliability performance. This paper aims to propose a planning tool for congestion forecasting and reliability assessment of overhead distribution lines. The tool inputs consist of a single line diagram of a real or synthetic grid and a set of 24-h forecasting time series concerning climatic conditions and grid resource operative profiles. The developed approach aims to avoid congestions criticalities, taking advantage of optimal active power dispatching among “congestion-nearby resources”. A case study is analysed to validate the implemented control strategy considering a modified IEEE 14-Bus System with introduction of renewables. The tool also implements reliability prediction formulas to calculate an overhead line reliability function in congested and congestions-avoided conditions. A quantitative evaluation underlines the reliability performance achievable after the congestion strategy action.


2019 ◽  
Vol 9 (2) ◽  
pp. 250 ◽  
Author(s):  
Diego del Rey Carrión ◽  
Leandro Juan-Llácer ◽  
José-Víctor Rodríguez

Transitioning a Terrestrial Trunked Radio (TETRA) network to a Long-Term Evolution (LTE) network in public protection and disaster relief (PPDR) systems is a path to providing future services requiring high radio interface throughput and allowing broadband PPDR (BB-PPDR) radio communications. Users of TETRA networks are currently considering how to deploy a BB-PPDR network in the coming years. This study offers several radio planning considerations in TETRA to LTE migration for such networks. The conclusions are obtained from a case study in which both measurements and radioelectric coverage simulations were carried out for the real scenario of the Murcia Region, Spain, for both TETRA and LTE systems. The proposed considerations can help PPDR agencies efficiently estimate the cost of converting a TETRA network to an LTE network. Uniquely in this study, the total area is divided into geographical areas of interest that are defined as administrative divisions (region, municipal areas, etc.). The analysis was carried out using a radio planning tool based on a geographic information system and the measurements have been used to tune the propagation models. According to the real scenario considered, the number of sites needed in the LTE network—for a specific quality of service (90% for the whole region and 85% for municipal areas)—is a factor of 2.4 higher than for TETRA network.


Author(s):  
M. A. Satter ◽  
M. R. Satter ◽  
J. Pumwa

The paper deals with the design and review of curriculum of a formal study program employing the Quality Function Deployment (QFD) methodology that can take into account of the requirements of various stakeholders such as, academics, students, sponsors, employers, and accreditation agencies. Starting with a simple model for teaching and learning, in which curriculum is one of the basic elements, the paper describes curriculum review procedure employing the QFD planning tool known as House of Quality. Then, it presents a case study on the review of mechanical engineering program of the PNG University of Technology.


Author(s):  
Tawhid Kawser ◽  
MOHAMMED R. AL-AMIN ◽  
KHONDOKER Z. ISLAM ◽  
SIFAT-E- MOHAMMAD

Mobile WiMAX is expected to be the next generation radio-interface, complementing WLAN and challenging EVDO/HSPA/LTE. High speed data rate, reduced latency, better Quality of service, and mobility can allow WiMAX to meet the rapidly growing demand of the users. A study of WiMAX Radio Network Planning (RNP) for an urban area like Dhaka city in Bangladesh is presented in this paper in order to help predetermine the radio access infrastructure requirements. A suitable radio planning tool has been used for this purpose. The simulation results of throughput and Carrier to Interference plus Noise Ratio (CINR) are provided.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6865
Author(s):  
Iván Froiz-Míguez ◽  
Peio Lopez-Iturri ◽  
Paula Fraga-Lamas ◽  
Mikel Celaya-Echarri ◽  
Óscar Blanco-Novoa ◽  
...  

Climate change is driving new solutions to manage water more efficiently. Such solutions involve the development of smart irrigation systems where Internet of Things (IoT) nodes are deployed throughout large areas. In addition, in the mentioned areas, wireless communications can be difficult due to the presence of obstacles and metallic objects that block electromagnetic wave propagation totally or partially. This article details the development of a smart irrigation system able to cover large urban areas thanks to the use of Low-Power Wide-Area Network (LPWAN) sensor nodes based on LoRa and LoRaWAN. IoT nodes collect soil temperature/moisture and air temperature data, and control water supply autonomously, either by making use of fog computing gateways or by relying on remote commands sent from a cloud. Since the selection of IoT node and gateway locations is essential to have good connectivity and to reduce energy consumption, this article uses an in-house 3D-ray launching radio-planning tool to determine the best locations in real scenarios. Specifically, this paper provides details on the modeling of a university campus, which includes elements like buildings, roads, green areas, or vehicles. In such a scenario, simulations and empirical measurements were performed for two different testbeds: a LoRaWAN testbed that operates at 868 MHz and a testbed based on LoRa with 433 MHz transceivers. All the measurements agree with the simulation results, showing the impact of shadowing effects and material features (e.g., permittivity, conductivity) in the electromagnetic propagation of near-ground and underground LoRaWAN communications. Higher RF power levels are observed for 433 MHz due to the higher transmitted power level and the lower radio propagation losses, and even in the worst gateway location, the received power level is higher than the sensitivity threshold (−148 dBm). Regarding water consumption, the provided estimations indicate that the proposed smart irrigation system is able to reduce roughly 23% of the amount of used water just by considering weather forecasts. The obtained results provide useful guidelines for future smart irrigation developers and show the radio planning tool accuracy, which allows for optimizing the sensor network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.


Sign in / Sign up

Export Citation Format

Share Document