Dynamics formulation and motion control of a planar parallel manipulator

Author(s):  
M. Farhadmanesh ◽  
E. Abedloo ◽  
A. Molaei
1970 ◽  
Vol 41 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Soheil Zarkandi

Finding Singular configurations (singularities) is one of the mandatory steps during the design and control of mechanisms. Because, in these configurations, the instantaneous kinematics is locally undetermined that causes serious problems both to static behavior and to motion control of the mechanism. This paper addresses the problem of determining singularities of a 3-PRRR kinematically redundant planar parallel manipulator by use of an analytic technique. The technique leads to an input –output relationship that can be used to find all types of singularities occurring in this type of manipulators.Key Words: Planar parallel manipulators; Redundant manipulators; Singularity analysis; Jacobian matrices.DOI: 10.3329/jme.v41i1.5356Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 1-6


2014 ◽  
Vol 971-973 ◽  
pp. 1280-1283 ◽  
Author(s):  
Anjan Kumar Dash ◽  
Sai Krishnamurthy ◽  
Shyam Prasadh ◽  
Vishanth Sundar

A Planar Parallel Manipulator (PPM) with non-planar links overcomes most of the shortcomings in conventional manipulators. Due to cantilever action, the links of a PPM develop bending stress. When the links are non-planar (having inclination with the horizontal plane), this cantilever action reduces and the same manipulator can have higher payload capacity. In this project, a planar 3-RRR manipulator with non-planar links is investigated for rectifying singularity at home configuration, and a novel method of position feedback of the motor is designed, fabricated and tested with rest of the motion control components.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


Author(s):  
Ethan Stump ◽  
Vijay Kumar

While there is extensive literature available on parallel manipulators in general, there has been much less attention given to cable-driven parallel manipulators. In this paper, we address the problem of analyzing the reachable workspace using the tools of semi-definite programming. We build on earlier work [1, 2] done using similar techniques by deriving limiting conditions that allow us to compute analytic expressions for the boundary of the reachable workspace. We illustrate this computation for a planar parallel manipulator with four actuators.


Sign in / Sign up

Export Citation Format

Share Document