A novel SOI-based single proof-mass 3-axis accelerometer with gap-closing differential capacitive electrodes in all sensing directions

Author(s):  
Chia-Pao Hsu ◽  
Yi-Chang Hsu ◽  
Ming-Chuen Yip ◽  
Weileun Fang
Keyword(s):  
2017 ◽  
Vol 28 (12) ◽  
pp. 1640-1650 ◽  
Author(s):  
Sukhdeep Kaur ◽  
Einar Halvorsen

Conventionally modeled as spring–damper system, the end-stops in vibration energy harvesters set a limit to the displacement of the proof mass at sufficiently high excitation levels. In some studies, it is seen that the end-stop parameters needed adjustment to fit the simulations to the measurements at particular operating condition. In this article, the discrepancy between the simulation and measurement results on varying the operating condition is investigated in detail. A check on sensitivity of an electrostatic in-plane gap closing energy harvester to the parameters end-stop stiffness, end-stop damping, and end-stop position at various biases and excitation levels is performed. The simulations at 3-V bias and root mean square (RMS) acceleration amplitude 0.6 g show a remarkable variation of 30 Hz in up-sweep jump-down frequency on varying end-stop position by 0.12 µm. The simulation results also show a significant increase in sensitivity of up-sweep jump-down frequency to end-stop damping on increasing excitation level at fixed bias. The article also discusses the sensitivity in jump frequencies to perturbations in the excitation signal due to the presence of noise, where the jump-down frequency becomes smaller as the noise level increases. The trajectories studied at 8-V bias and RMS acceleration amplitude 0.6 g with different end-stop parameters show a strong influence of the end-stop model parameters on the motion of the proof mass. A lumped model of the device is fitted to the measurements for a whole range of operating conditions with one fixed set of model parameter, where asymmetric end-stop positions and their effect on the device behavior are shown to be crucial. The results presented in this article show that in order to reproduce and analyze the measured behavior of the harvester over a range of operating conditions, very fine details in the model are significant.


2005 ◽  
Vol 60 (9) ◽  
pp. 1041-1042 ◽  
Author(s):  
John Raven
Keyword(s):  

2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

2021 ◽  
Vol 30 (1) ◽  
pp. 19-27
Author(s):  
Kumar Gomathi ◽  
Arunachalam Balaji ◽  
Thangaraj Mrunalini

Abstract This paper deals with the design and optimization of a differential capacitive micro accelerometer for better displacement since other types of micro accelerometer lags in sensitivity and linearity. To overcome this problem, a capacitive area-changed technique is adopted to improve the sensitivity even in a wide acceleration range (0–100 g). The linearity is improved by designing a U-folded suspension. The movable mass of the accelerometer is designed with many fingers connected in parallel and suspended over the stationary electrodes. This arrangement gives the differential comb-type capacitive accelerometer. The area changed capacitive accelerometer is designed using Intellisuite 8.6 Software. Design parameters such as spring width and radius, length, and width of the proof mass are optimized using Minitab 17 software. Mechanical sensitivity of 0.3506 μm/g and Electrical sensitivity of 4.706 μF/g are achieved. The highest displacement of 7.899 μm is obtained with a cross-axis sensitivity of 0.47%.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 310
Author(s):  
Muhammad Mubasher Saleem ◽  
Shayaan Saghir ◽  
Syed Ali Raza Bukhari ◽  
Amir Hamza ◽  
Rana Iqtidar Shakoor ◽  
...  

This paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 and nonlinearity less than 0.5%.


1992 ◽  
Vol 6 (5) ◽  
pp. 447-459
Author(s):  
David C. Zimmerman ◽  
Ali Maddahian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document