Acoustoelectric current response to gas molecular doping in graphene

Author(s):  
Shijun Zheng ◽  
Daihua Zhang
2019 ◽  
Vol 15 (6) ◽  
pp. 628-634
Author(s):  
Rong Liu ◽  
Jie Li ◽  
Tongsheng Zhong ◽  
Liping Long

Background: The unnatural levels of dopamine (DA) result in serious neurological disorders such as Parkinson’s disease. Electrochemical methods which have the obvious advantages of simple operation and low-cost instrumentation were widely used for determination of DA. In order to improve the measurement performance of the electrochemical sensor, molecular imprinting technique and graphene have always been employed to increase the selectivity and sensitivity. Methods: An electrochemical sensor which has specific selectivity to (DA) was proposed based on the combination of a molecular imprinting polymer (MIP) with a graphene (GR) modified gold electrode. The performance and effect of MIP film were investigated by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) in the solution of 5.0 ×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6] with 0.2 mol/L KCl at room temperature. Results: This fabricated sensor has well repeatability and stability, and was used to determine the dopamine of urine. Under the optimized experiment conditions, the current response of the imprinted sensor was linear to the concentration of dopamine in the range of 1.0×10-7 ~ 1.0×10-5 mol/L, the linear equation was I (µA) = 7.9824+2.7210lgc (mol/L) with the detection limit of 3.3×10-8 mol/L. Conclusion: In this work, a highly efficient sensor for determination of DA was prepared with good sensitivity by GR and great selectivity of high special recognization ability by molecular imprinting membrane. This proposed sensor was used to determine the dopamine in human urine successfully.


Author(s):  
Umesh Kumar Soni ◽  
Ramesh Kumar Tripathi

Background: Brushless DC motors are highly efficient motors due to its high torque to weight ratio, compact design, high speed operating capability and higher power density. Conventional Hall sensor based rotor position sensing is affected by the heating, vibration, interference and noise. Objective: The innovative, cost effective and easily implementable sensorless techniques are essential in order to achieve high efficiency, reduced current and reduced torque pulsations. Further, a delay free, high load fast startup is also important issue. Methods: In this paper an extensive review of various techniques based on the detection of freewheeling diode current, phase back EMF zero crossoing point detection, back EMF integration method and third harmonic back EMF was done. The study and effect of various PWM strategies on back EMF detection was studied. Later on the sensorless schemes based on flux linkage estimation and flux linkage increment were introduced. The load torque observers, unknown input observers, sliding mode observers, L∞-induced observers, H ∞ - deconvolution filter for back EMF estimation were also reviewed. As the brushless DC motors have no back EMF at starting and for back EMF based commutation a minimum speed is required for sufficient back EMF. Therefore various strategies of open and close-loop reduced current startup have been studied to achieve effective commutation without reverse torque. Initial position detection (IPD) schemes, which are mostly based on saliency and current response to inductance variation, is effective where reverse torque is strictly prohibited. A detailed review of these initial position detection techniques (IPD) has also been presented. Results: The detailed mathematical and graphical analysis has been presented here in order to understand the working of the state-of-art sensorless techniques. Conclusion: The back EMF detection using direct and indirect methods of terminal voltage filtering have the problem of delay and attenuation, PWM noise, freewheeling diode spikes and disturbance in detected back EMFs is a drawback. The parameter detuning, underestimation and overestimation, offset problem, system noise and observer gain variation etc. limit the applicability of observer based technique. Therefore, a more robust and precise position estimation scheme is essential.


1979 ◽  
Vol 44 (11) ◽  
pp. 3395-3404 ◽  
Author(s):  
Pavel Posádka ◽  
Lumír Macholán

An oxygen electrode of the Clark type, coated by a thin, active layer of chemically insolubilized ascorbate oxidase from squash peelings specifically detects by measuring oxygen uptake 10 to 400 μg of ascorbic acid in 3 ml of phosphate buffer. The record of current response to substrate addition lasts 1-2 min. The ascorbic acid values determined in various samples of fruit juices are in good agreement with the data obtained by titration and polarography. The suitable composition of the membrane and its lifetime and stability during long-term storage are described; optimal reaction conditions of vitamin C determination and the possibilities of interference of other compounds are also examined. Of the 35 phenols, aromatic amines and acids tested chlorogenic acid only can cause a positive error provided that the enzyme membrane has been prepared from ascorbate oxidase of high purity.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 723
Author(s):  
Kgotla K. Masibi ◽  
Omolola E. Fayemi ◽  
Abolanle S. Adekunle ◽  
Amal M. Al-Mohaimeed ◽  
Asmaa M. Fahim ◽  
...  

This report narrates the successful application of a fabricated novel sensor for the trace detection of endosulfan (EDS). The sensor was made by modifying a glassy-carbon electrode (GCE) with polyaniline (PANI), chemically synthesized antimony oxide nanoparticles (AONPs), acid-functionalized, single-walled carbon nanotubes (fSWCNTs), and finally, the AONP-PANI-SWCNT nanocomposite. The electrochemical properties of the modified electrodes regarding endosulfan detection were investigated via cyclic voltammetry (CV) and square-wave voltammetry. The current response of the electrodes to EDS followed the trend GCE-AONP-PANI-SWCNT (−510 µA) > GCE-PANI (−59 µA) > GCE-AONPs (−11.4 µA) > GCE (−5.52 µA) > GCE-fSWCNTs (−0.168 µA). The obtained results indicated that the current response obtained at the AONP-PANI-SWCNT/GCE was higher with relatively low overpotential compared to those from the other electrodes investigated. This demonstrated the superiority of the AONP-PANI-SWCNT-modified GCE. The AONP-PANI-SWCNT/GCE demonstrated good electrocatalytic activities for the electrochemical reduction of EDS. The results obtained in this study are comparable with those in other reports. The sensitivity, limit of detection (LoD), and limit of quantification (LoQ) of AONP-PANI-SWCNT/GCE towards EDS was estimated to be 0.0623 µA/µM, 6.8 µM, and 20.6 µM, respectively. Selectivity, as well as the practical application of the fabricated sensor, were explored, and the results indicated that the EDS-reduction current was reduced by only 2.0% when interfering species were present, whilst average recoveries of EDS in real samples were above 97%.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yibing Xie

AbstractA PPY/TiO2/PPY jacket nanotube array was fabricated by coating PPY layer on the external and internal surface of a tube wall-separated TiO2 nanotube array. It shows coaxial triple-walled nanotube structure with two PPY nanotube layers sandwiching one TiO2 nanotube layer. PPY/TiO2/PPY reveals much higher current response than TiO2. The theoretical calculation indicates PPY/TiO2/PPY reveals higher density of states and lower band gap, accordingly presenting higher conductivity and electroactivity, which is consistent with the experimental result of a higher current response. The electroactivity is highly enhanced in H2SO4 rather than Na2SO4 electrolyte due to feasible pronation process of PPY in an acidic solution. PPY/TiO2/PPY could conduct the redox reaction in H2SO4 electrolyte which involves the reversible protonation/deprotonation and HSO4− doping/dedoping process and accordingly contributes to Faradaic pseudocapacitance. The specific capacitance is highly enhanced from 1.7 mF cm−2 of TiO2 to 123.4 mF cm−2 of PPY/TiO2/PPY at 0.1 mA cm−2 in H2SO4 electrolyte. The capacitance also declines from 123.4 to 31.7 mF cm−2 when the current density increases from 0.1 to 1 mA cm−2, presenting the rate capacitance retention of 26.7% due to the semiconductivity of TiO2. A PPY/TiO2/PPY jacket nanotube with high charge storage capacitance is regarded as a promising supercapacitor electrode material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1899
Author(s):  
Mattia Pizzone ◽  
Maria Grazia Grimaldi ◽  
Antonino La La Magna ◽  
Neda Rahmani ◽  
Silvia Scalese ◽  
...  

Molecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times. In this work, we investigate the molecular surface coverage over time of diethyl-propyl phosphonate on silicon, by employing high-resolution morphological and electrical characterization, and examine the effects of the post-deposition surface treatments on it. We present these data together with density functional theory simulations of the molecules–substrate system and electrical measurements of the doped samples. The results allow us to recognise a difference in the bonding types involved in the formation of the molecular layers and how these influence the final doping profile of the samples. This will improve the control on the electrical properties of MD-based devices, allowing for a finer tuning of their performance.


2021 ◽  
Vol 11 (6) ◽  
pp. 2608
Author(s):  
Chien-Hsun Liu ◽  
Willybrordus H. P. Muda ◽  
Cheng-Chien Kuo

A power transformer (PT) in power generation or transmission is critical to maintaining electrical continuity. Fault detection on a PT is needed, especially of incipient faults, which are often caused by a turn-to-turn fault (TTF) before it develops into a more severe fault. We use a hybrid algorithm between conventional and modern techniques to detect a developing fault in a PT. The current response signals from a negative sequence current directional algorithm, extended park vector algorithm (EPVA), differential negative sequence current, and EPVA-fuzzy system are combined to distinguish the possibility of a TTF. The subalgorithms are combined using a hybrid detection algorithm to distinguish the faults. The model is a 10 MVA, three-phase PT with Δ-Y configuration 150/300 kV, simulated using MATLAB Simulink software. The results show that by combining the subalgorithms, several limitations are distinguished within the TTF with a slight increase in accuracy.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 517
Author(s):  
Siyamthanda Hope Mnyipika ◽  
Tshimangadzo Saddam Munonde ◽  
Philiswa Nosizo Nomngongo

The rapid detection of trace metals is one of the most important aspect in achieving environmental monitoring and protection. Electrochemical sensors remain a key solution for rapid detection of heavy metals in environmental water matrices. This paper reports the fabrication of an electrochemical sensor obtained by the simultaneous electrodeposition of MnO2 nanoparticles and RGO nanosheets on the surface of a glassy carbon electrode. The successful electrodeposition was confirmed by the enhanced current response on the cyclic voltammograms. The XRD, HR-SEM/EDX, TEM, FTIR, and BET characterization confirmed the successful synthesis of MnO2 nanoparticles, RGO nanosheets, and MnO2@RGO nanocomposite. The electrochemical studies results revealed that MnO2@RGO@GCE nanocomposite considerably improved the current response on the detection of Zn(II), Cd(II) and Cu(II) ions in surface water. These remarkable improvements were due to the interaction between MnO2 nanomaterials and RGO nanosheets. Moreover, the modified sensor electrode portrayed high sensitivity, reproducibility, and stability on the simultaneous determination of Zn(II), Cd(II), and Cu(II) ions. The detection limits of (S/N = 3) ranged from 0.002–0.015 μg L−1 for the simultaneous detection of Zn(II), Cd(II), and Cu(II) ions. The results show that MnO2@RGO nanocomposite can be successfully used for the early detection of heavy metals with higher sensitivity in water sample analysis.


Sign in / Sign up

Export Citation Format

Share Document