Leg joint synergy emerged from the body dynamics during walking

Author(s):  
Seiji Toyota ◽  
Shoko Kaichida ◽  
Yoshimitsu Hashizume ◽  
Jun Nishii
Keyword(s):  
The Body ◽  
1991 ◽  
Vol 334 (1271) ◽  
pp. 385-390 ◽  

A simple two-dimensional rod and pivot model is proposed for the mechanical structure of the lamprey, each pivot being controlled by a muscle segment attached via perpendicular extensions to the two rods. The elastic and viscous properties of the body tissues (including muscle) are described as linear functions of the relative displacement and angular velocity of the rods at each pivot. The contractile properties of the muscle are introduced as time-dependent forcing torques at the pivots, which are generated by a travelling wave of activation. The angles between the rods at each pivot are used as adapted coordinates, and the equations of motion are linearized by assuming low curvature dynamics, corresponding to slow swimming speeds. Investigation of these equations with varying viscous and elastic parameters leads to a reconstruction of a lamprey viewed in motion on a smooth flat surface out of water. The most striking feature is of an apparently standing wave motion, which is indeed observed in the real animal but which on careful examination in the model corresponds to a travelling wave of varying amplitude.


2011 ◽  
Vol 690 ◽  
pp. 173-202 ◽  
Author(s):  
Pauline Assemat ◽  
David Fabre ◽  
Jacques Magnaudet

AbstractWe consider the transition between the steady vertical path and the oscillatory path of two-dimensional bodies moving under the effect of buoyancy in a viscous fluid. Linearization of the Navier–Stokes equations governing the flow past the body and of Newton’s equations governing the body dynamics leads to an eigenvalue problem, which is solved numerically. Three different body geometries are then examined in detail, namely a quasi-infinitely thin plate, a plate of rectangular cross-section with an aspect ratio of 8, and a rod with a square cross-section. Two kinds of eigenmodes are observed in the limit of large body-to-fluid mass ratios, namely ‘fluid’ modes identical to those found in the wake of a fixed body, which are responsible for the onset of vortex shedding, and four additional ‘aerodynamic’ modes associated with much longer time scales, which are also predicted using a quasi-static model introduced in a companion paper. The stability thresholds are computed and the nature of the corresponding eigenmodes is investigated throughout the whole possible range of mass ratios. For thin bodies such as a flat plate, the Reynolds number characterizing the threshold of the first instability and the associated Strouhal number are observed to be comparable with those of the corresponding fixed body. Other modes are found to become unstable at larger Reynolds numbers, and complicated branch crossings leading to mode switching are observed. On the other hand, for bluff bodies such as a square rod, two unstable modes are detected in the range of Reynolds number corresponding to wake destabilization. For large enough mass ratios, the leading mode is similar to the vortex shedding mode past a fixed body, while for smaller mass ratios it is of a different nature, with a Strouhal number about half that of the vortex shedding mode and a stronger coupling with the body dynamics.


2013 ◽  
Vol 13 (3) ◽  
pp. 823-834 ◽  
Author(s):  
Alessandro De Rosis ◽  
Giacomo Falcucci ◽  
Stefano Ubertini ◽  
Francesco Ubertini ◽  
Sauro Succi

AbstractThis work is concerned with the modelling of the interaction of fluid flow with flexibly supported rigid bodies. The fluid flow is modelled by Lattice-Boltzmann Method, coupled to a set of ordinary differential equations describing the dynamics of the solid body in terms its elastic and damping properties. The time discretization of the body dynamics is performed via the Time Discontinuous Galerkin Method. Several numerical examples are presented and highlight the robustness and efficiency of the proposed methodology, by means of comparisons with previously published results. The examples show that the present fluid-structure method is able to capture vortex- induced oscillations of flexibly-supported rigid body.


2016 ◽  
Vol 26 (3) ◽  
pp. 157-167
Author(s):  
Mansooreh Khalilizand ◽  
Keyword(s):  
The Body ◽  

Author(s):  
Serge Abrate

A survey of a large number of well-known textbooks for an undergraduate dynamics class showed that often new concepts are introduced without a clear connection to previously discussed material. For example, the concepts of work done by a force, linear momentum, angular momentum, and power are often introduced without a clear direct connection to Newton’s law. Similarly, in rigid body dynamics, important concepts such as the center of mass and the moments of inertia of the body are often introduced with little or no background. This article shows how all the important concepts in dynamics flow directly and logically from Newton’s laws. This is done through simple direct derivations. Connections are made clear by concept maps that help students understand how these different concepts are related. In addition to introducing new concepts and deriving some of the basic equations, a dynamics class should also introduce students to problem solving help them develop a systematic approach. This article describes a five step approach that is recommended for both high context and low context problems. In that context we stress that problem solving is a process that involves the application of known concepts and mathematics.


2005 ◽  
Vol 74 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Hooshang Hemami ◽  
Bostwick F. Wyman

Rigid body dynamics are traditionally formulated by Lagrangian or Newton-Euler methods. A particular state space form using Euler angles and angular velocities expressed in the body coordinate system is employed here to address constrained rigid body dynamics. We study gliding and rolling, and we develop inverse systems for estimation of internal and contact forces of constraint. A primitive approximation of biped locomotion serves as a motivation for this work. A class of constraints is formulated in this state space. Rolling and gliding are common in contact sports, in interaction of humans and robots with their environment where one surface makes contact with another surface, and at skeletal joints in living systems. This formulation of constraints is important for control purposes. The estimation of applied and constraint forces and torques at the joints of natural and robotic systems is a challenge. Direct and indirect measurement methods involving a combination of kinematic data and computation are discussed. The basic methodology is developed for one single rigid body for simplicity, brevity, and precision. Computer simulations are presented to demonstrate the feasibility and effectiveness of the approaches presented. The methodology can be applied to a multilink model of bipedal systems where natural and/or artificial connectors and actuators are modeled. Estimation of the forces is accomplished by the inverse of the nonlinear plant designed by using a robust high gain feedback system. The inverse is shown to be stable, and bounds on the tracking error are developed. Lyapunov stability methods are used to establish global stability of the inverse system.


Author(s):  
Vladislav Kopman ◽  
Jeffrey Laut ◽  
Maurizio Porfiri ◽  
Francesco Acquaviva ◽  
Alessandro Rizzo

This paper presents a dynamic model for a class of robotic fish propelled by a tail with a flexible fin. The robot is comprised of a rigid frontal link acting as a body and a rear link serving as the tail. The tail includes a rigid component, hinged to the body through a servomotor, which is connected to a compliant caudal fin whose underwater vibration induces the propulsion. The robot’s body dynamics is modeled using Kirchhoff’s equations of motion of bodies in quiescent fluids, while its tail motion is described with Euler-Bernoulli beam theory, accounting for the effect of the encompassing fluid through the Morison equation. Simulation data of the model is compared with experimental data. Applications of the model include simulation, prediction, design optimization, and control.


2019 ◽  
Vol 39 (4) ◽  
pp. 461-475
Author(s):  
Mehdi Benallegue ◽  
Jean-Paul Laumond ◽  
Alain Berthoz

During the steady gait, humans stabilize their head around the vertical orientation. Although there are sensori-cognitive explanations for this phenomenon, its mechanical effect on the body dynamics remains unexplored. In this study, we take profit from the similarities that human steady gait shares with the locomotion of passive-dynamics robots. We introduce a simplified anthropometric 2D model to reproduce a broad walking dynamics. In a previous study, we showed heuristically that the presence of a stabilized head–neck system has a significant influence on the dynamics of walking. This article gives new insights that lead to understanding this mechanical effect. In particular, we introduce an original cart upper-body model that allows to better understand the mechanical interest of head stabilization when walking, and we study how this effect is sensitive to the choice of control parameters.


Sign in / Sign up

Export Citation Format

Share Document