Impedance matching circuit for 30–88MHz monopole antenna with automatic matching

Author(s):  
Akhmadanna Pradipta Putra ◽  
Achmad Munir
2017 ◽  
Vol 7 (1.1) ◽  
pp. 461 ◽  
Author(s):  
Pronami Bora ◽  
Mona Mudaliar ◽  
Yuvraj Baburao Dhanade ◽  
K Sreelakshm ◽  
Chayan Paul ◽  
...  

A metamaterial extended microstrip rectangular patch antenna with CSRR loading and defected ground structures(DGS) is proposed for wideband applications with band notching at the frequencies of KU band. The proposed antenna is designed by embedding it on Rogers RT/Duroid 5880 substrate with good impedance matching of 50 Ω at the feedline.The high frequency structure simulator (HFSS) is used to design and simulate the antennas parameters in the operating band. Measurement results confirm the antenna characteristics as predicted in the simulation with a slight shift in frequencies.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Danvir Mandal ◽  
S. S. Pattnaik

A novel wide coplanar waveguide- (CPW-) fed multiband wearable monopole antenna is presented. The multiband operation is achieved by generating slanted monopoles of different lengths from an isosceles triangular patch. The different operating frequencies of the proposed antenna are associated with the lengths of the slanted monopoles, which are determined under quarter wavelength resonance condition. The CPW line is used as a multiband impedance-matching structure. The two grounds are slightly extended for better impedance matching. The proposed antenna is designed to cover the 1800 MHz GSM, 2.4 GHz/5.2 GHz WLAN, and 3.5 GHz WiMAX bands. The measured peak gains and impedance bandwidths are about 4.18/3.83/2.6/2.94 dBi and 410/260/170/520 MHz for the 1550-1960 MHz/2.3-2.56 GHz/3.4-3.57 GHz/5.0-5.52 GHz bands, respectively. The calculated averaged specific absorption rate (SAR) values at all the resonant frequencies are well below the standard limit of 2 W/kg, which ensures its feasibility for wearable applications. The antenna performance under different bending configurations is investigated and the results are presented. The reflection coefficient characteristics of the proposed antenna is also measured for different on-arm conditions and the results are compared. A good agreement between experimental and simulation results validates the proposed design approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mohammad M. Fakharian

This paper introduces a wideband rectenna that can scavenge ambient wireless power to a range of frequency band from 0.91 GHz to 2.55 GHz efficiently. The proposed rectenna is based on a wideband 2 × 2 fractal monopole antenna array with omnidirectional radiation patterns and high gains of 5 to 8.3 dBi at the desired bands. An improved two-branch impedance matching technique is presented which is designed to enhance the rectifier circuit performance with a relatively low input power ranging from −25 dBm to 10 dBm. Also, a full-wave wideband rectifier that can suitably improve the RF-to-DC power conversion efficiency is designed for the rectenna. A peak efficiency of 76%, 71%, 61%, and 62% is obtained at 950, 1850, 2100, and 2450 MHz, respectively. Measurement results show that a conversion efficiency of 68% has been achieved over an optimal 4.7 kΩ resistor when the simultaneous four-band input power level is −10 dBm. Moreover, an output DC voltage of around 243 mV with voltage varying within 160–250 mV can be achieved by gathering the low ambient wireless power inside laboratory. This study proves that the proposed rectenna can be applied to a range of many low-power electronic applications.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 80
Author(s):  
Saritha Vanka ◽  
Tanmayi Seedrala ◽  
Jhansi Rani Areti

This work presents a circularly polarized, CPW-Fed multi band operating monopole antenna. The monopole antenna consists of three parasitic elements, along with a stub at ground for impedance matching. The parasitic elements so far accumulated have shown their excellence in increasing the impedance bandwidth over the 6-18GHz band. The antenna was carved on FR-4 epoxy substrate which result a copper clad laminated structure. The CPW-Fed monopole antenna exhibits excellent circular polarization levels in the frequency region 6-18GHz. The simulation resulted a Return loss of less than -10dB, with good axial ratio less than -3dB over entire band of interest. The simulation was carried out through HFSS microwave studio. The antenna measured values are in good correspondence to the simulated values. 


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


Author(s):  
Mohammad Alibakhshi-Kenari

In this article, a new construction of a small planar dual-band fed printed monopole antenna based on coplanar waveguide is suggested. Impedance matching for dual-band operations is obtained by embedding three vertical strips with different sizes in the U-shaped conductor-backed plane. The main problem of the designed antenna is the measuring of the specifications with the Agilent 8722ES Vector Network Analyzer, when the coaxial cable is connected to the antenna. Hence, in this paper a new method for decoupling the cable from the antenna is presented. This method is based on using the ferrite bead. The ferrite bead reduces the cable radiation, so that its position plays the important part in the antenna radiation characteristics. The fabricated antenna includes the benefits of the miniaturized size and dual-band operating specifications, so that the mentioned properties have been achieved without modifying the coplanar-waveguide-ground surface or radiator patch. The antenna has the small size of 15 × 15 × 0.8 mm3and bandwidths with S11 < −10 dB about 2.2 GHz (5.05–7.25 GHz) for WLAN-band or IEEE 802.11a-band and 5.2GHz (7.6–12.8 GHz) for X-band, which correspond to 36 and 51% practical bandwidths, respectively. The antenna measured peak gains are about 1.8 dBi at WLAN-band and 4.3 dBi at X-band.


Sign in / Sign up

Export Citation Format

Share Document