Determination of ZIP Load Model Parameters based on Synchrophasor Data by Genetic Algorithm

Author(s):  
Kriengsak Fungyai ◽  
Natcha Sangmeg ◽  
Achara Pichetjamroen ◽  
Sanchai Dechanupaprittha ◽  
Natthawuth Somakettarin
2010 ◽  
Vol 6 (S270) ◽  
pp. 455-458
Author(s):  
Yaroslav Pavlyuchenkov ◽  
Dmitry Wiebe ◽  
Anna Fateeva ◽  
Tatiana Vasyunina

AbstractThe determination of prestellar core structure is often based on observations of (sub)millimeter dust continuum. However, recently the Spitzer Space Telescope provided us with IR images of many objects not only in emission but also in absorption. We developed a technique to reconstruct the density and temperature distributions of protostellar objects based on radiation transfer (RT) simulations both in mm and IR wavelengths. Best-fit model parameters are obtained with the genetic algorithm. We apply the method to two cores of Infrared Dark Clouds and show that their observations are better reproduced by a model with an embedded heating source despite the lack of 70 μm emission in one of these cores. Thus, the starless nature of massive cores can only be established with the careful case-by-case RT modeling.


2012 ◽  
Vol 45 (4) ◽  
pp. 627-643 ◽  
Author(s):  
T. Skippon ◽  
C. Mareau ◽  
M. R. Daymond

A genetic algorithm was implemented in order to optimize the selection of parameters within a polycrystalline plasticity model. Previously collected experimental data from tests performed on textured Zircaloy-2, consisting of macroscopic flow curves, lattice strains and Lankford coefficients, all measured in both tension and compression in three principle directions of a plate, were reproduced by the model. The results obtained were found to be comparable to prior attempts to optimize the model parameters manually.


2005 ◽  
Vol 16 (07) ◽  
pp. 1043-1050 ◽  
Author(s):  
A. SELLAI ◽  
Z. OUENNOUGHI

Details concerning the implementation of a versatile genetic algorithm are presented. Solar cell and Schottky diode model parameters are extracted based on the fitness of experimental data to theoretical curves simulated in the framework of certain physical processes and the use of this genetic algorithm. The method is shown to be a reliable alternative to conventional numerical techniques in fitting experimental data to model calculations and the subsequent determination of model related parameters. It is demonstrated, through two examples in particular, that some of the drawbacks associated with the conventional methods can be circumvented if a genetic algorithm is used instead. For instance, a good initial guess is not a critical requirement for convergence and an initial broad range for each of the fitting parameters is enough to achieve reasonably good fits.


2019 ◽  
Author(s):  
Carmen Guguta ◽  
Jan M.M. Smits ◽  
Rene de Gelder

A method for the determination of crystal structures from powder diffraction data is presented that circumvents the difficulties associated with separate indexing. For the simultaneous optimization of the parameters that describe a crystal structure a genetic algorithm is used together with a pattern matching technique based on auto and cross correlation functions.<br>


2021 ◽  
Vol 19 (1) ◽  
pp. 205-213
Author(s):  
Hany W. Darwish ◽  
Abdulrahman A. Al Majed ◽  
Ibrahim A. Al-Suwaidan ◽  
Ibrahim A. Darwish ◽  
Ahmed H. Bakheit ◽  
...  

Abstract Five various chemometric methods were established for the simultaneous determination of azilsartan medoxomil (AZM) and chlorthalidone in the presence of azilsartan which is the core impurity of AZM. The full spectrum-based chemometric techniques, namely partial least squares (PLS), principal component regression, and artificial neural networks (ANN), were among the applied methods. Besides, the ANN and PLS were the other two methods that were extended by genetic algorithm procedure (GA-PLS and GA-ANN) as a wavelength selection procedure. The models were developed by applying a multilevel multifactor experimental design. The predictive power of the suggested models was evaluated through a validation set containing nine mixtures with different ratios of the three analytes. For the analysis of Edarbyclor® tablets, all the proposed procedures were applied and the best results were achieved in the case of ANN, GA-ANN, and GA-PLS methods. The findings of the three methods were revealed as the quantitative tool for the analysis of the three components without any intrusion from the co-formulated excipient and without prior separation procedures. Moreover, the GA impact on strengthening the predictive power of ANN- and PLS-based models was also highlighted.


2005 ◽  
Vol 43 (sup1) ◽  
pp. 253-266 ◽  
Author(s):  
J. A. Cabrera ◽  
A. Ortiz ◽  
E. Carabias ◽  
A. Simón

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


Sign in / Sign up

Export Citation Format

Share Document