Using Remotely Sensed Data To Monitor Land Surface Climatology Variations In A Semi-arid Grassland

Author(s):  
L.F. Johnson ◽  
N.A. Bryant ◽  
A.J. BrazeI ◽  
C.F. Hutchinson ◽  
R.C. Balling
2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabelo Nick Dlamini ◽  
Jonas Franke ◽  
Penelope Vounatsou

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.


1998 ◽  
Vol 2 (2/3) ◽  
pp. 149-158 ◽  
Author(s):  
W. J. Shuttleworth

Abstract. This paper describes a strategic approach for providing documentation of the surface energy exchange for heterogeneous land surfaces via the simultaneous, four-dimensional assimilation of several streams of remotely sensed data into a coupled land surface-atmosphere model. The basic concepts and underlying theory behind this proposed approach are presented with the intent that this will guide, facilitate, and stimulate future research focused on its practical implementation when appropriate data from the Earth Observing System (EOS) become available. The theoretical concepts that underlie the approach are derived from relationships between the values of parameters which control surface exchanges at pixel (or patch) scale and the area-average value of equivalent parameters applicable at larger, grid scale. A three-step implementation method is proposed which involves (a) estimating grid-average surface radiation fluxes from appropriate remotely sensed data; (b) absorbing these radiation flux estimates into a four-dimensional data assimilation model in which grid-average values of vegetation-related parameters are calculated from pertinent remotely sensed data using the equations that link pixel and grid scales; and (c) improving the resulting estimate of the surface energy balance-again using scale-linking equations by estimating the effect of soil-moisture availability, perhaps assuming that cloud-free pixels are an unbiased subsample of all the pixels in the grid square.


Author(s):  
Sassi Mohamed Taher

This document is meant to demonstrate the potential uses of remote sensing in managing water resources for irrigated agriculture and to create awareness among potential users. Researchers in various international programs have studied the potential use of remotely sensed data to obtain accurate information on land surface processes and conditions. These studies have demonstrated that quantitative assessment of the soil-vegetation-atmosphere transfer processes can lead to a better understanding of the relationships between crop growth and water management. Remote sensing and GIS was used to map the agriculture area and for detect the change. This was very useful for mapping availability and need of water resources but the problem was concentrating in data collection and analysis because this kind of information and expertise are not available in all country in the world mainly in the developing and under developed country or third world country. However, even though considerable progress has been made over the past 20 years in research applications, remotely sensed data remain underutilized by practicing water resource managers. This paper seeks to bridge the gap between researchers and practitioners first, by illustrating where research tools and techniques have practical applications and, second, by identifying real problems that remote sensing could solve. An important challenge in the field of water resources is to utilize the timely, objective and accurate information provided by remote sensing.


2018 ◽  
Vol 10 (10) ◽  
pp. 1534 ◽  
Author(s):  
Linan Guo ◽  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Junsheng Li ◽  
...  

In the Tibetan Plateau (TP), the changes of lake ice phenology not only reflect regional climate change, but also impose substantial ecohydrological impacts on the local environment. Due to the limitation of ground observation, remote sensing has been used as an alternative tool to investigate recent changes of lake ice phenology. However, uncertainties exist in the remotely sensed lake ice phenology owing to both the data and methods used. In this paper, three different remotely sensed datasets are used to investigate the lake ice phenology variation in the past decade across the Tibetan Plateau, with the consideration of the underlying uncertainties. The remotely sensed data used include reflectance data, snow product, and land surface temperature (LST) data of moderate resolution imaging spectroradiometer (MODIS). The uncertainties of the three methods based on the corresponding data are assessed using the triple collocation approach. Comparatively, it is found that the method based on reflectance data outperforms the other two methods. The three methods are more consistent in determining the thawing dates rather than the freezing dates of lake ice. It is consistently shown by the three methods that the ice-covering duration in the northern part of the TP lasts longer than that in the south. Though there is no general trend of lake ice phenology across the TP for the period of 2000–2015, the warmer climate and stronger wind have led to the earlier break-up of lake ice.


1998 ◽  
Vol 22 (1) ◽  
pp. 33-60 ◽  
Author(s):  
Igor V. Florinsky

This article presents a review of the combined analysis of digital terrain models (DTMs) and remotely sensed data in landscape investigations. The utilization of remotely sensed data with DTMs has become an important trend in geomatics in the past two decades. Models of more than ten quantitative topographic variables are employed as ancillary data in the treatment of images. The article reviews the methods for DTM derivation and the basic problems of DTM operation that are important for handling DTMs with imagery, namely: 1) the choice of a DTM network type; 2) DTM resolution; 3) DTM accuracy; and 4) the precise superimposition of DTMs and images. The processing of remotely sensed data and DTMs in combination is used in the following procedures: 1) the image correction of the topographic effect; 2) the correction of geometric image distortion; 3) image classification; 4) statistical and comparative analyses of landscape data; and 5) three-dimensional landscape modelling. These procedures are applied to solve a wide range of problems in geobotany, geochemistry, soil science, geology, glaciology and other sciences. The joint use of imagery and DTMs can increase the total amount of information extracted from both types of data. The trend has been towards the incorporation of the combined analysis of remotely sensed data and DTMs into mixed environmental models. The following potential applications of the treatment of imagery in association with DTMs are identified: 1) the prediction of the migration and accumulation zones of water, mineral and organic substances moved by gravity along the land surface and in the soil; 2) the investigation of the relationships between topographically expressed geological structures and landscape properties; 3) the improvement of geological engineering in industrial planning (e.g., the construction of nuclear power stations, oil and gas pipelines and canals); and 4) the monitoring of existing industries. Digital models of plan, profile, mean and total accumulation curvatures, and nonlocal and combined topographic attributes should be included in data processing both to solve the problems indicated and to improve the outcome of some regular tasks (for example, the prediction of soil moisture distribution and fault recognition).


2017 ◽  
Vol 548 ◽  
pp. 1-15 ◽  
Author(s):  
Victor Hugo R. Coelho ◽  
Suzana Montenegro ◽  
Cristiano N. Almeida ◽  
Bernardo B. Silva ◽  
Leidjane M. Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document