Building an on-demand web service system for Global Agricultural Drought Monitoring and Forecasting

Author(s):  
Meixia Deng ◽  
Liping Di ◽  
Genong Yu ◽  
Ali Yagci ◽  
Chunming Peng ◽  
...  
Author(s):  
Clara Betancourt ◽  
Björn Hagemeier ◽  
Sabine Schröder ◽  
Martin G. Schultz

AbstractWe present context-aware benchmarking and performance engineering of a mature TByte-scale air quality database system which was created by the Tropospheric Ozone Assessment Report (TOAR) and contains one of the world’s largest collections of near-surface air quality measurements. A special feature of our data service https://join.fz-juelich.de is on-demand processing of several air quality metrics directly from the TOAR database. As a service that is used by more than 350 users of the international air quality research community, our web service must be easily accessible and functionally flexible, while delivering good performance. The current on-demand calculations of air quality metrics outside the database together with the necessary transfer of large volume raw data are identified as the major performance bottleneck. In this study, we therefore explore and benchmark in-database approaches for the statistical processing, which results in performance enhancements of up to 32%.


2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Mihui Kim ◽  
Mihir Asthana ◽  
Siddhartha Bhargava ◽  
Kartik Krishnan Iyyer ◽  
Rohan Tangadpalliwar ◽  
...  

The increasing number of Internet of Things (IoT) devices with various sensors has resulted in a focus on Cloud-based sensing-as-a-service (CSaaS) as a new value-added service, for example, providing temperature-sensing data via a cloud computing system. However, the industry encounters various challenges in the dynamic provisioning of on-demand CSaaS on diverse sensor networks. We require a system that will provide users with standardized access to various sensor networks and a level of abstraction that hides the underlying complexity. In this study, we aim to develop a cloud-based solution to address the challenges mentioned earlier. Our solution, SenseCloud, includes asensor virtualizationmechanism that interfaces with diverse sensor networks, amultitenancymechanism that grants multiple users access to virtualized sensor networks while sharing the same underlying infrastructure, and adynamic provisioningmechanism to allow the users to leverage the vast pool of resources on demand and on a pay-per-use basis. We implement a prototype of SenseCloud by using real sensors and verify the feasibility of our system and its performance. SenseCloud bridges the gap between sensor providers and sensor data consumers who wish to utilize sensor data.


Author(s):  
Yousif S. Almamalachy ◽  
Ayad M. Fadhil Al-Quraishi ◽  
Hamid Moradkhani

2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


Sign in / Sign up

Export Citation Format

Share Document