Combining UAS and Sentinel-2 Data to Estimate Canopy Parameters of a Cotton Crop Using Machine Learning

Author(s):  
Akash Ashapure ◽  
Jinha Jung ◽  
Sungchan Oh ◽  
Anjin Chang ◽  
Nothabo Dube ◽  
...  
2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


2021 ◽  
Vol 13 (3) ◽  
pp. 408
Author(s):  
Charles Nickmilder ◽  
Anthony Tedde ◽  
Isabelle Dufrasne ◽  
Françoise Lessire ◽  
Bernard Tychon ◽  
...  

Accurate information about the available standing biomass on pastures is critical for the adequate management of grazing and its promotion to farmers. In this paper, machine learning models are developed to predict available biomass expressed as compressed sward height (CSH) from readily accessible meteorological, optical (Sentinel-2) and radar satellite data (Sentinel-1). This study assumed that combining heterogeneous data sources, data transformations and machine learning methods would improve the robustness and the accuracy of the developed models. A total of 72,795 records of CSH with a spatial positioning, collected in 2018 and 2019, were used and aggregated according to a pixel-like pattern. The resulting dataset was split into a training one with 11,625 pixellated records and an independent validation one with 4952 pixellated records. The models were trained with a 19-fold cross-validation. A wide range of performances was observed (with mean root mean square error (RMSE) of cross-validation ranging from 22.84 mm of CSH to infinite-like values), and the four best-performing models were a cubist, a glmnet, a neural network and a random forest. These models had an RMSE of independent validation lower than 20 mm of CSH at the pixel-level. To simulate the behavior of the model in a decision support system, performances at the paddock level were also studied. These were computed according to two scenarios: either the predictions were made at a sub-parcel level and then aggregated, or the data were aggregated at the parcel level and the predictions were made for these aggregated data. The results obtained in this study were more accurate than those found in the literature concerning pasture budgeting and grassland biomass evaluation. The training of the 124 models resulting from the described framework was part of the realization of a decision support system to help farmers in their daily decision making.


2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


Author(s):  
Edson Filisbino Freire da Silva ◽  
Evlyn Márcia Leão de Moraes Novo ◽  
Felipe de Lucia Lobo ◽  
Cláudio Clemente Faria Barbosa ◽  
Carolline Tressmann Cairo ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


Author(s):  
Sandhya N. dhage, Dr. Vijay Kumar Garg

Qualitative and quantitative agricultural production leads to economic benefits which can be achieved by periodic monitoring of crop, detection and prevention of crop diseases and insects. Quality of crop production is reduced by pest infection and crop diseases. Existing measures involves manual detection of cotton diseases by farmers and experts which requires  regular monitoring and detection manifest at middle to later stage of infection which causes many disadvantages such as becoming  too late for diseases to be cured.  Lack of early detection of diseases causes the diseases to be spread in nearby crops in the field and also spraying of pesticides is done on entire field for minimizing the infection of disease. The main goal of proposed research topic is to find the solution to the agriculture problem which involves detecting disease in cotton plant at early stage and classify the disease based on symptoms. Early detection of disease at an early stage prevent it from spreading to another area and preventive measures can be taken by farmers by spraying pesticides to control its growth which helps to increase the cotton yield production. Automatic identification of the different diseases affecting cotton crop will give many benefits to the farmers so that time, money will be saved and also gives healthy life to the crop. The contribution of this paper is to present the machine learning approach used for cotton crop disease diagnosis and classification.


2021 ◽  
Author(s):  
Semih Kuter ◽  
Cansu Aksu ◽  
Kenan Bolat ◽  
Zuhal Akyurek

<p>The fractional snow cover (FSC) product H35 is a daily operational product based on multi-channel analysis of AVHRR onboard to NOAA and MetOp satellites. H35 is supplied by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and Water Management (HSAF). The “traditional” H35 FSC product is generated at pixel resolution by exploiting the brightness intensity, which is the convolution of the snow signal and the fraction of snow within the pixel and the sampling is carried out at 1-km intervals. The product for flat/forested regions is generated by Finnish Meteorological Institute (FMI) and the product for mountainous areas is generated by Turkish State Meteorological Service (TSMS). Both products, thereafter, are merged at FMI. This presentation aims to represent the latest findings of our efforts in developing an “alternative” H35 FSC product for the mountainous part by using two data-driven machine learning methodologies, namely, multivariate adaptive regression splines (MARS) and random forests (RFs). In total, 332 Sentinel 2 images over Alps, Tatra Mountains and Turkey acquired between November 2018 and April 2019 are used in order to generate the necessary reference FSC maps for the training of the MARS and RF models. AVHRR bands 1-5, NDSI and NDVI are used as predictor variables. Binary classified Sentinel 2 snow maps, ERA5 snow depth and MODIS MOD10A1 NDSI data are employed in the validation of the models. The results show that both MARS- and RF-based H35 product are i) in good agreement with reference FSC maps (as indicated by low RMSE and relatively high R values) and ii) able to capture the spatial variability of the snow extend. However, MARS-based H35 is preferred for an operational FSC product generation due to the high computational cost required in RF model.</p>


Sign in / Sign up

Export Citation Format

Share Document