AbstractFor the benefit of reducing capacitance in multilevel interconnect technology, low-k dielectric HSQ (hydrogen silsesquioxane) has been used as a gapfill material in Al-metallization- based non-etchback embedded scheme. The vias are consequently fabricated through the HSQ layer followed by W plug deposition. In order to reduce the extent of via poisoning and achieve good W/Al contact, thin Ti/TiN stack films are typically deposited before via plug deposition. In this case, HSQ makes direct contact with the Ti layer. The reliability of the Ti/HSQ structures at elevated temperatures has been systematically studied in this work by using a variety of techniques. These results are also compared with those from Ti/TEOS (Tetraethylorthosilicate) structure, where TEOS is a conventional intra-metal dielectric. When the temperature is below 550 °C, a significant number of oxygen atoms are observed to diffuse into the titanium layer. The primary source of oxygen is believed to come from the HSQ film. When the temperature is above 550 °C, HSQ starts to react with Ti. At 700 °C, a TiO/Ti5Si3/HSQ stack structure forms. The Ti/HSQ system exhibits a higher reactivity than that of the Ti/TEOS system.