scholarly journals An Efficient Scheme for the Generation of Ordered Trees in Constant Amortized Time

Author(s):  
Victor Parque ◽  
Tomoyuki Miyashita
Author(s):  
Rinkle Chhabra ◽  
Anuradha Saini

Mobile Ad Hoc Networks (MANET) are autonomous, infrastructure less and self-configuring networks. MANETs has gained lots of popularity due to on the fly deployment i.e. small network setup time and ability to provide communication in obstreperous terrains. Major challenges in MANETs include routing, energy efficiency, network topology control, security etc. Primary focus in this article is to provide method and algorithm to ensure significant energy savings using re-configurable directional antennas. Significant energy gains can be clinched using directional antenna. Key challenges while using directional antenna are to find destination location, antenna focusing, signal power and distance calculations. Re-configurable directional antenna can ensure significant energy gains if used intelligently. This article provides a brief insight into improved energy savings using re-configurable directional antennas and an associated algorithm


Author(s):  
Dawei Chen ◽  
Choong Seon Hong ◽  
Yiyong Zha ◽  
Yunfei Zhang ◽  
Xin Liu ◽  
...  
Keyword(s):  

Author(s):  
Mareike Fischer

AbstractTree balance plays an important role in different research areas like theoretical computer science and mathematical phylogenetics. For example, it has long been known that under the Yule model, a pure birth process, imbalanced trees are more likely than balanced ones. Also, concerning ordered search trees, more balanced ones allow for more efficient data structuring than imbalanced ones. Therefore, different methods to measure the balance of trees were introduced. The Sackin index is one of the most frequently used measures for this purpose. In many contexts, statements about the minimal and maximal values of this index have been discussed, but formal proofs have only been provided for some of them, and only in the context of ordered binary (search) trees, not for general rooted trees. Moreover, while the number of trees with maximal Sackin index as well as the number of trees with minimal Sackin index when the number of leaves is a power of 2 are relatively easy to understand, the number of trees with minimal Sackin index for all other numbers of leaves has been completely unknown. In this manuscript, we extend the findings on trees with minimal and maximal Sackin indices from the literature on ordered trees and subsequently use our results to provide formulas to explicitly calculate the numbers of such trees. We also extend previous studies by analyzing the case when the underlying trees need not be binary. Finally, we use our results to contribute both to the phylogenetic as well as the computer scientific literature using the new findings on Sackin minimal and maximal trees to derive formulas to calculate the number of both minimal and maximal phylogenetic trees as well as minimal and maximal ordered trees both in the binary and non-binary settings. All our results have been implemented in the Mathematica package SackinMinimizer, which has been made publicly available.


1993 ◽  
Vol 07 (26) ◽  
pp. 4305-4329 ◽  
Author(s):  
C.Z. WANG ◽  
B.L. ZHANG ◽  
K.M. HO ◽  
X.Q. WANG

The recent development in understanding the structures, relative stability, and electronic properties of large fullerenes is reviewed. We describe an efficient scheme to generate the ground-state networks for fullerene clusters. Combining this scheme with quantum-mechanical total-energy calculations, the ground-state structures of fullerenes ranging from C 20 to C 100 have been studied. Fullerenes of sizes 60, 70, and 84 are found to be energetically more stable than their neighbors. In addition to the energies, the fragmentation stability and the chemical reactivity of the clusters are shown to be important in determining the abundance of fullerene isomers.


Sign in / Sign up

Export Citation Format

Share Document