An ultra low-power dynamic translinear cardiac sense amplifier for pacemakers

Author(s):  
S.A.P. Haddad ◽  
S. Gieltjes ◽  
R. Houben ◽  
W.A. Serdijn
2019 ◽  
Vol 100-101 ◽  
pp. 113465
Author(s):  
S.W. Zheng ◽  
J.S. Bi ◽  
K. Xi ◽  
J. Liu ◽  
M. Liu ◽  
...  

2014 ◽  
Vol 23 (05) ◽  
pp. 1450066
Author(s):  
JITENDRA KANUNGO ◽  
S. DASGUPTA

Energy recovery clocking is an ultimate solution to the ultra low power sequential digital circuit design. In this paper, we present a new slave latch for a sense-amplifier based flip-flop (SAFF). Energy recovery sinusoidal clock is applied to the low power SAFF. Extensive simulation based comparisons among reported and proposed SAFF are carried-out at 90 nm CMOS technology node. The proposed flip-flop operating with energy recovery single phase sinusoidal clock shows better performance. The proposed flip-flop also reduces the leakage current and glitch.


2021 ◽  
Author(s):  
komal swami ◽  
Ritu Sharma

Abstract Energy conservation and delay minimization are the two major goals while designing ultra-low-power digital integrated circuits at lower technology nodes. Here, silicon based carbon nanotube field effect transistor (CNTFET) has been explored as a novel material for future electronics design applications (EDA). In this paper, two energy-efficient switching activity minimization techniques have been applied with proposed designs. First technique detects the completion of sensing stage operation known as transition completion detection (TCD) technique. TC signal generated from NAND operation of complementary outputs of sensing stage which minimizes glitches in the complementary outputs of the latch stage. Another clock gating mechanism applied at the latch stage to smoothen the output waveforms Q and . The proposed and existing designs simulated using 32nm CMOS and 32nm CNTFET technology, indicating that the CNTFET based design reduces power by 45% and 36% respectively in comparison with conventional CMOS. Proposed Low Power Sense Amplifier Flip Flop with transition control detection (TCD-LPSAFF) and Ultra Low Energy Sense Amplifier Flip Flop (ULESAFF) give optimum power delay product (PDP) which is 35.7x10-18 J and 29.6x10-18 J respectively. Also, the effect of process variation has been analyzed at specified corners (FF, TT and SS) in the temperature range of -40º C to 120º C. The performance of all designs has been validated by functionality testing with variation in diameter, number of tubes and pitch respectively.


Author(s):  
Steve Ngueya W. ◽  
Julien Mellier ◽  
Stephane Ricard ◽  
Jean-Michel Portal ◽  
Hassen Aziza

2018 ◽  
Vol 14 (1) ◽  
pp. 157-169 ◽  
Author(s):  
W. Steve Ngueya ◽  
Jean-Michel Portal ◽  
Hassen Aziza ◽  
Julien Mellier ◽  
Stephane Ricard

2005 ◽  
Vol 14 (05) ◽  
pp. 939-951 ◽  
Author(s):  
ZHI-HUI KONG ◽  
KIAT-SENG YEO ◽  
CHIP-HONG CHANG

A novel micro-power current sense amplifier employing a cross-coupled current-mirror configuration is presented. The circuit is designed for low-voltage low-power SRAM applications. Its sensing speed is independent of the bit-line capacitances and is almost insensitive to the data-line capacitances. Extensive post-layout simulation results based on a 1.8 V/0.18 μm CMOS technology from Chartered Semiconductor Manufacturing Ltd. (CHRT) have verified that the new sense amplifier promises a much sought-after power-efficient advantage and a note-worthy power-delay product superiority over the conventional and recently reported sense amplifier circuits. These attributes of the proposed sense amplifier make it judiciously appropriate for use in the contemporary high-complexity regime, which incessantly craves for low-power characteristics.


Sign in / Sign up

Export Citation Format

Share Document