MLSA: A link-state multipath routing algorithm

Author(s):  
Haijun Geng ◽  
Xia Yin ◽  
Xingang Shi ◽  
Zhiliang Wang
Author(s):  
Jin Yong-xian

To improve the energy efficiency of the wireless sensor network (WSN), and extend the network life. This paper proposes an improved unequal clustering multipath routing algorithm (UCMRA). The algorithm improves the formula of cluster head selection probability and competition radius, and considers the energy factor, node density, optimal number of cluster heads, etc. Experimental results show that, compared with the traditional algorithm, UCMRA has more stable cluster head distribution, less energy consumption and longer network lifetime.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate


Author(s):  
Rui Yang ◽  
Ying Song ◽  
Gui Chao ◽  
Baolin Sun

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3642 ◽  
Author(s):  
Genta ◽  
K.Lobiyal ◽  
Abawajy

Wireless multimedia sensor networks (WMSNs) are capable of collecting multimedia events, such as traffic accidents and wildlife tracking, as well as scalar data. As a result, WMSNs are receiving a great deal of attention both from industry and academic communities. However, multimedia applications tend to generate high volume network traffic, which results in very high energy consumption. As energy is a prime resource in WMSN, an efficient routing algorithm that effectively deals with the dynamic topology of WMSN but also prolongs the lifetime of WMSN is required. To this end, we propose a routing algorithm that combines dynamic cluster formation, cluster head selection, and multipath routing formation for data communication to reduce energy consumption as well as routing overheads. The proposed algorithm uses a genetic algorithm (GA)-based meta-heuristic optimization to dynamically select the best path based on the cost function with the minimum distance and the least energy dissipation. We carried out an extensive performance analysis of the proposed algorithm and compared it with three other routing protocols. The results of the performance analysis showed that the proposed algorithm outperformed the three other routing protocols.


Sign in / Sign up

Export Citation Format

Share Document