An Application Real-time Acquiring EEG Signal from Single Lead Electrode to Recognize Brain Activity using Neurosky Sensor

Author(s):  
Destyan Sulisetyo Nugroho ◽  
Iman Fahruzi
2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4695
Author(s):  
Francisco E. Cabrera ◽  
Pablo Sánchez-Núñez ◽  
Gustavo Vaccaro ◽  
José Ignacio Peláez ◽  
Javier Escudero

The visual design elements and principles (VDEPs) can trigger behavioural changes and emotions in the viewer, but their effects on brain activity are not clearly understood. In this paper, we explore the relationships between brain activity and colour (cold/warm), light (dark/bright), movement (fast/slow), and balance (symmetrical/asymmetrical) VDEPs. We used the public DEAP dataset with the electroencephalogram signals of 32 participants recorded while watching music videos. The characteristic VDEPs for each second of the videos were manually tagged for by a team of two visual communication experts. Results show that variations in the light/value, rhythm/movement, and balance in the music video sequences produce a statistically significant effect over the mean absolute power of the Delta, Theta, Alpha, Beta, and Gamma EEG bands (p < 0.05). Furthermore, we trained a Convolutional Neural Network that successfully predicts the VDEP of a video fragment solely by the EEG signal of the viewer with an accuracy ranging from 0.7447 for Colour VDEP to 0.9685 for Movement VDEP. Our work shows evidence that VDEPs affect brain activity in a variety of distinguishable ways and that a deep learning classifier can infer visual VDEP properties of the videos from EEG activity.


Author(s):  
Aditya Dimas

People feel different emotions when listening to music on certain levels. Such feelings occur because the music stimuli causing reduced or increased brain activity and producing brainwave with specific characteristics. Results of research indicated that classical piano music can influence one’s emotional intelligent. By using Electroenchephalography (EEG) as a brainwave recording instrument, we can assess the effect of stimulation on the emotions generated through brain activity. This study aimed at developing a method that defines the effect of sound to brain activity using an EEG signal that can be used to identify one's emotion based on classical piano music stimulus reaction. Based on its frequency, this signal was the classified using DWT. To train Artificial Neural Network, some features were taken from the signal. This ANN research was carried out using the process of backpropagation


2018 ◽  
Author(s):  
Ethan Oblak ◽  
James Sulzer ◽  
Jarrod Lewis-Peacock

AbstractThe neural correlates of specific brain functions such as visual orientation tuning and individual finger movements can be revealed using multivoxel pattern analysis (MVPA) of fMRI data. Neurofeedback based on these distributed patterns of brain activity presents a unique ability for precise neuromodulation. Recent applications of this technique, known as decoded neurofeedback, have manipulated fear conditioning, visual perception, confidence judgements and facial preference. However, there has yet to be an empirical justification of the timing and data processing parameters of these experiments. Suboptimal parameter settings could impact the efficacy of neurofeedback learning and contribute to the ‘non-responder’ effect. The goal of this study was to investigate how design parameters of decoded neurofeedback experiments affect decoding accuracy and neurofeedback performance. Subjects participated in three fMRI sessions: two ‘finger localizer’ sessions to identify the fMRI patterns associated with each of the four fingers of the right hand, and one ‘finger finding’ neurofeedback session to assess neurofeedback performance. Using only the localizer data, we show that real-time decoding can be degraded by poor experiment timing or ROI selection. To set key parameters for the neurofeedback session, we used offline simulations of decoded neurofeedback using data from the localizer sessions to predict neurofeedback performance. We show that these predictions align with real neurofeedback performance at the group level and can also explain individual differences in neurofeedback success. Overall, this work demonstrates the usefulness of offline simulation to improve the success of real-time decoded neurofeedback experiments.


2019 ◽  
Author(s):  
Nadine Farnes ◽  
Bjørn E. Juel ◽  
André S. Nilsen ◽  
Luis G. Romundstad ◽  
Johan F. Storm

AbstractObjectiveHow and to what extent electrical brain activity is affected in pharmacologically altered states of consciousness, where it is mainly the phenomenological content rather than the level of consciousness that is altered, is not well understood. An example is the moderately psychedelic state caused by low doses of ketamine. Therefore, we investigated whether and how measures of evoked and spontaneous electroencephalographic (EEG) signal diversity are altered by sub-anaesthetic levels of ketamine compared to normal wakefulness, and how these measures relate to subjective assessments of consciousness.MethodsHigh-density electroencephalography (EEG, 62 channels) was used to record spontaneous brain activity and responses evoked by transcranial magnetic stimulation (TMS) in 10 healthy volunteers before and after administration of sub-anaesthetic doses of ketamine in an open-label within-subject design. Evoked signal diversity was assessed using the perturbational complexity index (PCI), calculated from the global EEG responses to local TMS perturbations. Signal diversity of spontaneous EEG, with eyes open and eyes closed, was assessed by Lempel Ziv complexity (LZc), amplitude coalition entropy (ACE), and synchrony coalition entropy (SCE).ResultsAlthough no significant difference was found in the index of TMS-evoked complexity (PCI) between the sub-anaesthetic ketamine condition and normal wakefulness, all the three measures of spontaneous EEG signal diversity showed significantly increased values in the sub-anaesthetic ketamine condition. This increase in signal diversity also correlated with subjective assessment of altered states of consciousness. Moreover, spontaneous signal diversity was significantly higher when participants had eyes open compared to eyes closed, both during normal wakefulness and during influence of sub-anaesthetic ketamine doses.ConclusionThe results suggest that PCI and spontaneous signal diversity may be complementary and potentially measure different aspects of consciousness. Thus, our results seem compatible with PCI being indicative of the brain’s ability to sustain consciousness, as indicated by previous research, while it is possible that spontaneous EEG signal diversity may be indicative of the complexity of conscious content. The observed sensitivity of the latter measures to visual input seems to support such an interpretation. Thus, sub-anaesthetic ketamine may increase the complexity of both the conscious content (experience) and the brain activity underlying it, while the level, degree, or general capacity of consciousness remains largely unaffected.


2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Chi Hang Cheng ◽  
Shuai Li ◽  
Seifedine Kadry

This project attempts to implement an Arduino robot to simulate a brainwave-controlled wheelchair for paralyzed patients with an improved controlling method. The robot should be able to move freely in anywhere under the control of the user and it is not required to predefine any map or path. An accurate and natural controlling method is provided, and the user can stop the robot any time immediately to avoid risks or danger. This project is using a low-cost and a brainwave-reading headset which has only a single lead electrode (Neurosky mind wave headset) to collect the EEG signal. BCI will be developed by sending the EEG signal to the Arduino Mega and control the movement of the robot. This project used the eye blinking as the robot controlling method as the eye blinking will cause a significant pulse in the EEG signal. By using the neural network to classify the blinking signal and the noise, the user can send the command to control the robot by blinking twice in a short period of time. The robot will be evaluated by driving in different places to test whether it can follow the expected path, avoid the obstacles, and stop in a specific position.


2020 ◽  
Vol 52 (1) ◽  
pp. 52-60
Author(s):  
Yousef Mohammadi ◽  
Mohammad Hassan Moradi

Background Depression is one of the most common mental disorders and the leading cause of functional disabilities. This study aims to specify whether functional connectivity and complexity of brain activity can predict the severity of depression (Beck Depression Inventory–II scores). Methods Resting-state, eyes-closed EEG data were recorded from 60 depressed patients. A phase synchronization measure was used to estimate functional connectivity between all pairs of the EEG channels in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) frequency bands. To quantify the local value of functional connectivity, 2 graph theory metrics, degree, and clustering coefficient (CC), were measured. Moreover, Lempel-Ziv complexity (LZC) and fuzzy entropy (FuzzyEn) were used to measure the complexity of the EEG signal. Results Through correlation analysis, a significant negative relationship was found between graph metrics and depression severity in the alpha band. This association was strongly positive for the complexity measures in alpha and delta bands. Also, the linear regression model represented a substantial performance of depression severity prediction based on EEG features of the alpha band ( r = 0.839; P < .0001, root mean square error score of 7.69). Conclusion We found that the brain activity of patients with depression was related to depression severity. Abnormal brain activity reflects an increase in the severity of depression. The presented regression model provides a quantitative depression severity prediction, which can inform the development of EEG state and exhibit potential desirable application for the medical treatment of the depressive disorder.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850069 ◽  
Author(s):  
MOHAMMAD ALI AHMADI-PAJOUH ◽  
TIRDAD SEIFI ALA ◽  
FATEMEH ZAMANIAN ◽  
HAMIDREZA NAMAZI ◽  
SAJAD JAFARI

Analysis of human behavior is one of the major research topics in neuroscience. It is known that human behavior is related to his brain activity. In this way, the analysis of human brain activity is the root for analysis of his behavior. Electroencephalography (EEG) as one of the most famous methods for measuring brain activity generates a chaotic signal, which has fractal characteristic. This study reveals the relation between the fractal structure (complexity) of human EEG signal and the applied visual stimuli. For this purpose, we chose two types of visual stimuli, namely, living and non-living visual stimuli. We demonstrate that the fractal structure of human EEG signal changes significantly between living versus non-living visual stimuli. The capability observed in this research can be applied to other kinds of stimuli in order to classify the brain response based on the types of stimuli.


Sign in / Sign up

Export Citation Format

Share Document