Development of FPGA-based module of three-phase spindle motor speed-controller for CNC PCB milling and drilling machine

Author(s):  
Nopriandri ◽  
Farkhad Ihsan Hariadi ◽  
Arif Sasongko
Author(s):  
Issa Etier ◽  
Anci Manon Mary A. ◽  
Nithiyananthan Kannan

The main objective of this research work is to design the electronically communtated brushless direct current (BLDC) motor and analysis its performance in MATLAB environment. The use of BLDC engine is expanding daily, the performance analysis is progressively significant and the consumer loyalty is significant. In light of the ranking and requirements, the BLDC engine is planned. The BLDC motor is widely used in a variety of fields. Low ripple input supply and a suitable speed controller are needed to achieve desired motor output. The output of BLDC motors, such as torque, voltage, and speed response, is examined in this paper. The controller parameters have been fine-tuned to improve motor speed. It has been discovered that a three phase voltage source inverter (VSI) fed BLDC motor with a fractional-order proportional-integral-derivative (FOPID) controller provides superior BLDC motor response. The outcomes are broke down utilizing the MATLAB programming.


Author(s):  
Khalid Mohammed ◽  
Jabbar A.F. Yahaya ◽  
Reyasudin Basir Khan

This research presents a very important industrial issue of controlling the production target, despite changing loads. Engines of various types, whether synchronous or synchronous, operate on single and three phase AC, DC motors or special motors such as stepper and servo. In all these motors, the speed control of the torque and speed of the above motors has gained considerable importance. There are three main ways reviewed in the current search, the second that completes the previous research referred to in the references. The three methods are PID method, LQR method and feeding –forward control methods. A real DC motor was used in electrical engineering machine laboratory at University of Diyala, Iraq. Where the actual parameters of the DC motor were actually calculated. The practical parameters were then integrated into the three control method Matlab codes for the purpose of comparing the results and representing the motor performance in the indicated control methods.


Author(s):  
Meena Devi R. ◽  
L. Premalatha

A novel speed controller for the three-phase Brushless DC (BLDC) Motor Drive is proposed using a closed-loop AC-DC Bridgeless SEPIC Converter in continuous Conduction mode. This design proposes a single stage AC-DC converter with ON and OFF state equivalent circuits for 400W, 48V at 2450 rpm PMBLDC motor drive. The Fuzzy based voltage and current controlling method is proposed in this design. The voltage controlling method is used to control the speed for BLDC motor and the current controlling method is used to improve the power factor in AC supply. The speed of BLDC motor is observed with voltage disturbance and the constant motor speed is maintained. The proposed control method on SEPIC converter fed PMBLDC motor drive is modeled by Simulink/Matlab.


2014 ◽  
Vol 699 ◽  
pp. 759-764
Author(s):  
Amilia Emil Hasan ◽  
Haryani Hassan ◽  
Ismadi Bugis

This paper presents the speed performance of an induction motor by using a vector control. The control scheme used is an indirect vector control for define speed command. The main focus of this research is to observe on the dynamic speed performance of the induction motor when the command speed is given to the motor. In this study, the system of indirect vector control will be built by using Matlab Simulink. In fact, the expression of exciting flux linkage and electromagnetic torque are used to create a simple embedded system which to find out the effects of flux weakening in motor while, the gain of the speed controller is 100. The result shows that the vector control method will cause immediate the motor speed response with a small electromagnetic torque ripple. Furthermore, the output mechanical torque starts to decrease when the motor speed above the base speed to maintain a constant output power operation. This paper contributes a new algorithm to analysis the system when the speed motor is higher than a base speed.


Author(s):  
Azzeddine Ferrah ◽  
Mounir Bouzguenda ◽  
Jehad M. Al-Khalaf Bani Younis

Large and small single-phase and three-phase induction motors are commonly used in industrial applications. The present work represents an attempt towards the design of a high accuracy system for the measurement of fractional horsepower (FHP) induction motor losses and efficiency. The calorimeter designed and built is capable of measuring heat losses of up to 1 kW with an overall accuracy better than 3%. During all tests, ambient temperature, humidity, motor speed and motor frame temperature were recorded using precise digital instruments. The inlet, outlet temperatures and resulting losses were recorded automatically using a high accuracy 12-bit data acquisition system. The preliminary results obtained demonstrate the suitability of the designed calorimeter for the accurate measurement of losses in FHP induction motors.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2014 ◽  
Vol 6 (2) ◽  
pp. 168-171 ◽  
Author(s):  
Tadas Lipinskis

Multiphase electric motors have smaller torque pulsations and are more reliable that their three-phase alternatives. However, standard electricity grids around the world are three-phase, so power inverter is needed to drive multiphase motors. Inverter is used not only to power the motor, but also to control the am­plitude and frequency of the produced voltage, thus controlling motor speed and torque. Multiphase systems with odd number of phases have been widely investigated; therefore, this paper focuses on a six-phase inverter with a single neutral symmetrical load. A novel asymmetrical space vector modulation scheme is proposed and evaluated using simulations in Matlab/Simulink. Simulation results are compared to other modulation schemes. The proposed method is suitable for generating near-sinusoidal output voltages; however, it might not be suited for driving motors with sinusoidally distributed stator windings. Daugiafaziai elektros varikliai turi mažesnes sukimo momento pulsacijas ir didesnį patikimumą, lyginant su trifaziais varikliais. Pasaulyje paplitę trijų fazių elektros tinklai, todėl daugiafaziams varikliams maitinti reikalingi dažnio keitikliai, keičiantys standartinę vienfazę arba trifazę tinklo įtampą į daugiafazę. Dažnio keitiklis keičia ir išėjimo įtampos amplitudę, ir dažnį. Tai sudaro galimybių tiksliai valdyti variklio greitį. Literatūroje plačiai išnagrinėti daugiafazės įtampos formavimo metodai, esant nelyginiam fazių skaičiui. Darbe siūlomas naujas erdvinių vektorių asimetrinis įtampos formavimo algoritmas šešių fazių dažnio keitikliui, apkrautam simetrine apkrova su viena neutrale. Algoritmas tiriamas Matlab / Simulink programa, rezultatai palyginami su gautais, taikant kitus šešiafazės įtampos formavimo metodus.


Sign in / Sign up

Export Citation Format

Share Document