scholarly journals MATLAB based design and performance analysis of electronically commutated BLDC motor

Author(s):  
Issa Etier ◽  
Anci Manon Mary A. ◽  
Nithiyananthan Kannan

The main objective of this research work is to design the electronically communtated brushless direct current (BLDC) motor and analysis its performance in MATLAB environment. The use of BLDC engine is expanding daily, the performance analysis is progressively significant and the consumer loyalty is significant. In light of the ranking and requirements, the BLDC engine is planned. The BLDC motor is widely used in a variety of fields. Low ripple input supply and a suitable speed controller are needed to achieve desired motor output. The output of BLDC motors, such as torque, voltage, and speed response, is examined in this paper. The controller parameters have been fine-tuned to improve motor speed. It has been discovered that a three phase voltage source inverter (VSI) fed BLDC motor with a fractional-order proportional-integral-derivative (FOPID) controller provides superior BLDC motor response. The outcomes are broke down utilizing the MATLAB programming.

Author(s):  
Meena Devi R. ◽  
L. Premalatha

A novel speed controller for the three-phase Brushless DC (BLDC) Motor Drive is proposed using a closed-loop AC-DC Bridgeless SEPIC Converter in continuous Conduction mode. This design proposes a single stage AC-DC converter with ON and OFF state equivalent circuits for 400W, 48V at 2450 rpm PMBLDC motor drive. The Fuzzy based voltage and current controlling method is proposed in this design. The voltage controlling method is used to control the speed for BLDC motor and the current controlling method is used to improve the power factor in AC supply. The speed of BLDC motor is observed with voltage disturbance and the constant motor speed is maintained. The proposed control method on SEPIC converter fed PMBLDC motor drive is modeled by Simulink/Matlab.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3994-4000

This paper proposes the brushless direct current (BLDC) motor with high power density and high efficiency characteristics may be used to propulsion framework for electric vehicle. The progressive model for BLDC motor under rotor flux linkage route reference frame might have been providing. Here we analyzed the chart of ann vector and principal of ann control strategies and proposing the ann based reactive power with BLDC motor. To make ann based framework on active power, torque ripple, dc voltage, power factors can be used BLDC motor was designed. After designed simulation results was test the validity of field weakening based on reactive power with BLDC for electric vehicle application. In this research work will introduced artificial neural network (ANN) for non electrical input used. To control the BLDC motor speed it can using pulse width modulated control of the voltage source inverter (VLSI) using DC link voltage (Vdc) controller. To perform electronic commutation by hall signal sensing they are using PWM signal, to generate PWM signal inbuilt encoder can be used in this circuit. Analyze the BLDC motor performance driving propulsion framework is carried out under the MATLAB/Simulink software’s and efficiency of whole frame work is calculated under various source conditions


Author(s):  
R. Senthil Kumar ◽  
I. Gerald Christopher Raj ◽  
S. Sharavanan

This paper deals with Brushless DC (BLDC) motor drive mathematical model with hysteresis current controlled based Voltage Source Inverter (VSI) which operates using Neural Network (NN). The developed simulation model is applied with the artificial neuro speed controller which is based on Least Mean Square (LMS) and Adaptive Linear Neuron (ADALINE) to improve the performance of BLDC motor drive. Under dynamic operating conditions, the NN speed controller is trained by the data obtained from closed loop speed controller of BLDC motor drive system. The developed conventional and proposed simulation models are simulated using MATLAB/Simulation software. The proposed neural based speed controller is important for tracking of motor speed as well as torque with their reference values with minimum transient time. In this paper ADALINE network model is developed for update of weights in NN. Here, a comparative study has been done for PI and NN controller for BLDC drive. The simulation results show that the NN based speed controller is more effective controller compared to classical PI based speed controller during most of the dynamic operating conditions.


2020 ◽  
pp. 1-10
Author(s):  
Ankit Rawat ◽  
Mohd Fazle Azeem

The modeling of BLDC motor and performance analysis under diverse operating speed settings has been presented in this paper. BLDC motors gaining more & more attention from different Industrial and domestic appliance manufacturers due to its compact size, high efficiency and robust structure. Voluminous research and developments in the domains of material science and power electronics led to substantial increase in applications of BLDC motor to electric drives. This paper deals with the modeling of BLDC motor drive system along with a comparative study of modified queens bee evolution based GA tuned & manually tuned control schemes using MATLAB /SIMULINK. In order to evaluate the performance of proposed drive, simulation is carried out at different Mechanical load & speed conditions. Test outcomes thus achieved show that the model performance is satisfactory.


Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


Sign in / Sign up

Export Citation Format

Share Document