Influence of Added Phosphorus and Gallium in Lead-free Bismuth-Tin Alloys on Wetting and Intermetallic Compounds

Author(s):  
Iva Kralova ◽  
Anna Kadlecova ◽  
Petr Vesely ◽  
Karel Dusek
2005 ◽  
Vol 392 (1-2) ◽  
pp. 192-199 ◽  
Author(s):  
D.Q. Yu ◽  
C.M.L. Wu ◽  
C.M.T. Law ◽  
L. Wang ◽  
J.K.L. Lai

2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2004 ◽  
Vol 19 (12) ◽  
pp. 3560-3568 ◽  
Author(s):  
Chia-Wei Huang ◽  
Kwang-Lung Lin

The interfacial reactions of Sn–Zn based solder on Cu and Cu/Ni–P/Cu–plating substrates under aging at 150 °C were investigated in this study. The compositions of solders investigated were Sn–9Zn, Sn–8.55Zn–0.45Al, and Sn–8.55Zn–0.45Al–0.5Ag solders in weight percent. The experimental results indicated that the Cu substrate formed Cu5Zn8 with the Sn–9Zn solder and Al–Cu–Zn compound with Al–containing solders. However, it was detected that Cu6Sn5 formed at the Sn–9Zn/Cu interface and Cu5Zn8 formed at the Al–containing solders/Cu interface after aging for 1000 h. When it contacted with the Cu/Ni–P/Au substrate, the Sn–9Zn solder formed Au–Zn compound, and the Al–containing solders formed Al–Cu–Zn compound at the interface. After a long aging time, the intermetallic compounds existing between solders and the Cu/Ni–P/Au metallization layers almost did not grow. It was found that the interdiffusion between solders and Cu/Ni–P/Au was slower than that with Cu under aging. Furthermore, the addition of Ag to Sn–Zn solder resulted in the formation of AgZn3 particles at the interface.


2018 ◽  
Vol 941 ◽  
pp. 2087-2092
Author(s):  
Yusuke Nakata ◽  
Motoki Kurasawa ◽  
Tomihito Hashimoto ◽  
Kenji Miki ◽  
Ikuo Shohji

A pillar shaped intermetallic compounds (IMCs) dispersed solder joint is a highly durable joint to achieve large area joining. The aim of this study is to investigate the ideal dispersion amount of pillar shaped IMCs. The dispersion rate of pillar shaped IMCs depend on the joining temperature. Pillar shaped IMCs dispersion rates are 3.5% and 5.5% when the joining temperature are 300 °C and 330 °C, respectively. Longitudinal elastic modulus are improved by forming pillar shaped IMCs. As a result of examination of the durability by the thermal cycle test, the durability of the joint with the dispersion rate of 3.5% was similar to that without pillar shaped IMCs, while that with the dispersion rate of 5.5% was remarkably improved. In the case of the dispersion rate of 3.5%, pillar shaped IMCs unevenly distributed and cracks tend to progress. On the other hand, in the case of the dispersion rate of 5.5%, pillar shaped IMCs were uniformly dispersed throughout the joint and suppressed crack propagation. Comparison of durability between pillar shaped IMCs solder and indium added solder to verify the effect of pillar shaped IMCs demonstrated that pillar shaped IMCs solder were more durable than indium added solder.


2007 ◽  
Vol 22 (10) ◽  
pp. 2663-2667 ◽  
Author(s):  
Yee-wen Yen ◽  
Wei-kai Liou

This study investigates interfacial reactions of (Sn–9Zn) + xCu/Ni systems. Ni5Zn21, Cu5Zn8, (Ni,Zn,Cu)3Sn4, (Cu,Ni,Zn)6Sn5, and Cu6Sn5 phases were formed on the Sn–9Zn/Ni interface at 240–270 °C, when 0–10 wt% Cu was added to the Sn–9Zn solder. Experimental results indicate that changing the concentration of Cu in the Sn–9Zn solder dramatically changes the formation of intermetallic compounds (IMCs) in the (Sn–9Zn) + xCu/Ni system. Different diffusion and segregation rates of elements are the main reasons for a change in the IMC evolution.


Sign in / Sign up

Export Citation Format

Share Document