A Scalable Design Flow for Performance Monitors Using Functional Path Ring Oscillators

Author(s):  
Tobias Kilian ◽  
Heiko Ahrens ◽  
Daniel Tille ◽  
Martin Huch ◽  
Ulf Schlichtmann
2014 ◽  
Vol 1 ◽  
pp. 930-933
Author(s):  
Haruka Noda ◽  
Keisuke Nagata ◽  
Hisato Fujisaka ◽  
Takeshi Kamio ◽  
Kazuhisa Haeiwa

2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 53-60 ◽  
Author(s):  
B. Rabinowitz ◽  
T. D. Vassos ◽  
R. N. Dawson ◽  
W. K. Oldham

A brief review of recent developments in biological nitrogen and phosphorus removal technology is presented. Guidelines are outlined of how current understanding of these two removal mechanisms can be applied in the upgrading of existing wastewater treatment plants for biological nutrient removal. A case history dealing with the upgrading of the conventional activated sludge process located at Penticton, British Columbia, to a biological nutrient removal facility with a design flow of 18,200 m3/day (4.0 IMGD) is presented as a design example. Process components requiring major modification were the headworks, bioreactors and sludge handling facilities.


Author(s):  
A. L. Stempkovskiy ◽  
◽  
D. V. Telpukhov ◽  
A. I. Demeneva ◽  
T. D. Zhukova ◽  
...  

2021 ◽  
Vol 26 (5) ◽  
pp. 1-25
Author(s):  
Heechun Park ◽  
Bon Woong Ku ◽  
Kyungwook Chang ◽  
Da Eun Shim ◽  
Sung Kyu Lim

Studies have shown that monolithic 3D ( M3D ) ICs outperform the existing through-silicon-via ( TSV ) -based 3D ICs in terms of power, performance, and area ( PPA ) metrics, primarily due to the orders of magnitude denser vertical interconnections offered by the nano-scale monolithic inter-tier vias. In order to facilitate faster industry adoption of the M3D technologies, physical design tools and methodologies are essential. Recent academic efforts in developing an EDA algorithm for 3D ICs, mainly targeting placement using TSVs, are inadequate to provide commercial-quality GDS layouts. Lately, pseudo-3D approaches have been devised, which utilize commercial 2D IC EDA engines with tricks that help them operate as an efficient 3D IC CAD tool. In this article, we provide thorough discussions and fair comparisons (both qualitative and quantitative) of the state-of-the-art pseudo-3D design flows, with analysis of limitations in each design flow and solutions to improve their PPA metrics. Moreover, we suggest a hybrid pseudo-3D design flow that achieves both benefits. Our enhancements and the inter-mixed design flow, provide up to an additional 26% wirelength, 10% power consumption, and 23% of power-delay-product improvements.


Author(s):  
Sukanya Sagarika Meher ◽  
Jushya Ravi ◽  
Mustafa Eren Celik ◽  
Stephen Miller ◽  
Anubhav Sahu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document