Selection Method of a Driving Simulator Motion System

Author(s):  
Lucas Bruck ◽  
Stephen Veldhuis ◽  
Ali Emadi
2011 ◽  
Vol 460-461 ◽  
pp. 704-709
Author(s):  
Shu Tao Zheng ◽  
Zheng Mao Ye ◽  
Jun Jin ◽  
Jun Wei Han

Vehicle driving simulators are widely employed in training and entertainment utilities because of its safe, economic and efficient. Amphibious vehicle driving simulator was used to simulate amphibious vehicle on land and in water. Because of the motion difference between aircraft and amphibious vehicle, it is necessary to design a reasonable 6-DOF motion system according to the flight simulator motion system standard and vehicle motion parameter. FFT of DSP and PSD were used to analysis the relationship between them. Finally according to the result analysis, a set of reasonable 6-DOF motion system motion parameter was given to realize the driving simulator motion cueing used to reproduce vehicle acceleration.


Author(s):  
Peter Grant ◽  
Jeffrey S. Freeman ◽  
Rob Vail ◽  
Frank Huck

Abstract A multi-phased evaluation of the Iowa Driving Simulator as a virtual proving ground for construction equipment simulation is presented. In Phase I the Iowa Driving Simulator was evaluated in an “open-loop” mode to assess its capability to simulate a typical maneuver common to wheel loader operation, and its viability as a test platform for human subject evaluation of those maneuvers. A typical wheel loader truck loading cycle involves numerous directional shifts. Cycle productivity is increased if these shifts are executed at full engine throttle. Jerk and acceleration levels associated with full throttle shifts, however, can cause both operator discomfort and spillage of loaded material. Electronically controlled transmissions have the potential to both minimize directional shift times and material loss while optimizing operator comfort. This optimization will require an understanding of the factors which affect operator comfort during shifts. A study was therefore devised to determine those aspects of the motion generated by a directional shift which affect operator comfort. The Iowa Driving Simulator motion system was used to present operators with a series of acceleration time histories which are representative of various shift strategies. The operators rated the relative comfort of each strategy during paired comparison tests. Limitations of the simulator motion system prevented definitive results from being drawn; however, results did confirm shift comfort criteria previously established by the machine manufacturer. Success of the Phase I effort was sufficient to warrant a more in-depth study. In Phase II a complete VPG environment for wheel loader operation on the IDS was developed and qualitatively evaluated. This VPG environment included a visual model of a mine pit, developed for Caterpillar, Inc. by engineers at its National Center for Supercomputing Applications office, combined with the immersive motion capability of the Iowa Driving Simulator. A real-time dynamics model of a generic wheel loader along with a menu driven interface to the data set used to simulate a particular wheel loader were developed at Center for Computer Aided Design. This combination of programs allows changes to the design of a loader to be rapidly evaluated within a virtual proving ground environment or off-line at an engineering workstation. The machine model was then combined with an implement/soil interaction model, also developed at Caterpillar’s National Center for Supercomputing Applications office. The resulting machine model can be evaluated either off-line at a workstation or driven in response to operator input within the Iowa Driving Simulator virtual proving ground environment. A comparison of the offline model’s predictions of machine response to swept-sinewave steering input is shown to compare favorably with measured performance of the actual machine.


Author(s):  
Zhou Fang ◽  
Gilles Reymond ◽  
Andras Kemeny

The lag existing between the command and the resulting cockpit motion in a motion-based simulator, commonly referred to as “transport delay”, is actually the sum of a fixed delay and a frequency-dependent phase delay. A measurement procedure for the identification of the overall transfer function of a motion system is first presented, then it is used to design a proportional integral derivative (PID) compensator to reduce the apparent simulator lag in usual driving maneuvers. This procedure is carried out on RENAULT’s ULTIMATE high-performance driving simulator. For the reference driving task considered (slalom driving), this PID corrector is shown to bring a 100–200 ms reduction of the phase delay, which is quite perceivable and preferred by test drivers.


Author(s):  
PAULINA BARAN ◽  
◽  
MARIUSZ KREJ ◽  
MARCIN PIOTROWSKI ◽  
ŁUKASZ DZIUDA ◽  
...  

Abstract: This paper is aimed at presenting basic technical properties and possibilities of using the truck simulator owned by the Military Institute of Aviation Medicine (MIAM). The truck driving simulator is a stationary device, equipped with a six degrees of freedom (6 DoF|) motion system and reproducing the functionality of a truck on the basis of the Mercedes Benz Actros cabin. It is intended for conducting research as well as training truck drivers in simulated traffic conditions.


1987 ◽  
Vol 31 (5) ◽  
pp. 492-496 ◽  
Author(s):  
Lawrence H. Frank ◽  
John G. Casali ◽  
Walter W. Wierwille

The role of visual-motion coupling delays and cueing order on operator performance and uneasiness was assessed in a driving simulator by means of a response surface methodology central-composite design. The most salient finding of the study was that visual delay appears to be more disruptive to an individual's control performance and well-being than motion delay. Empirical multiple regression models were derived to predict 10 reliable measures of simulator operator driving performance and comfort. Principal components analysis on these 10 models decomposed the dependent measures into two significant models which were labeled vestibular disruption and degraded performance. Examination of the empirical models revealed that, for asynchronous delay conditions, better performance and well-being were achieved when the visual system led the motion system. A secondary analysis of the role of subject gender and perceptual style on susceptibility to simulator sickness revealed that neither of these independent variables was a significant source of variance.


Author(s):  
Andrew R. Plummer ◽  
Paulo Serena Guinzio

Valve-controlled electro-hydraulic actuators in a Stewart platform configuration have become established as a good way of meeting the performance required for flight simulator motion systems. However, valve-controlled actuators are very inefficient, and thus an electrohydrostatic motion system, controlled using servomotor driven pumps, has been developed by Thales, and is now in production. This paper presents a simulation study of a multi-axis controller which can improve the dynamic response of the new motion system. A modal control approach is used — i.e. the modes of vibration of the system are controlled individually. These modes are dependent on the inertial properties of the platform and the compliance of the actuators. The modes change as the motion system moves throughout its workspace, and so the controller has to adapt to the current operating point. Simulation results are presented based on a partially validated model of the motion system.


Sign in / Sign up

Export Citation Format

Share Document