Drop impact reliability testing of isothermally aged doped low creep lead-free solder paste alloys

Author(s):  
Sharath Sridhar ◽  
Anto Raj ◽  
Seth Gordon ◽  
Sivasubramanian Thirugnanasambandam ◽  
John L Evans ◽  
...  
2006 ◽  
Vol 46 (7) ◽  
pp. 1160-1171 ◽  
Author(s):  
Desmond Y.R. Chong ◽  
F.X. Che ◽  
John H.L. Pang ◽  
Kellin Ng ◽  
Jane Y.N. Tan ◽  
...  

2009 ◽  
Vol 517 (14) ◽  
pp. 4255-4259 ◽  
Author(s):  
Jong-Min Kim ◽  
Seung-Wan Woo ◽  
Yoon-Suk Chang ◽  
Young-Jin Kim ◽  
Jae-Boong Choi ◽  
...  

2015 ◽  
Vol 772 ◽  
pp. 284-289 ◽  
Author(s):  
Sabuj Mallik ◽  
Jude Njoku ◽  
Gabriel Takyi

Voiding in solder joints poses a serious reliability concern for electronic products. The aim of this research was to quantify the void formation in lead-free solder joints through X-ray inspections. Experiments were designed to investigate how void formation is affected by solder bump size and shape, differences in reflow time and temperature, and differences in solder paste formulation. Four different lead-free solder paste samples were used to produce solder bumps on a number of test boards, using surface mount reflow soldering process. Using an advanced X-ray inspection system void percentages were measured for three different size and shape solder bumps. Results indicate that the voiding in solder joint is strongly influenced by solder bump size and shape, with voids found to have increased when bump size decreased. A longer soaking period during reflow stage has negatively affectedsolder voids. Voiding was also accelerated with smaller solder particles in solder paste.


2019 ◽  
Vol 14 (1) ◽  
pp. 651-657
Author(s):  
Talita Mazon ◽  
Guilherme E. Prevedel ◽  
Egont A. Schenkel ◽  
Marcio T. Biasoli

2018 ◽  
Vol 27 (10) ◽  
pp. 5011-5017 ◽  
Author(s):  
D. Soares ◽  
H. Leitão ◽  
C. S. Lau ◽  
J. C. Teixeira ◽  
L. Ribas ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
pp. 000235-000241
Author(s):  
Fred Fuliang Le ◽  
Rinse van der Meulen ◽  
Yoon Kheong Leong ◽  
Manoj Balakrishnan ◽  
Zunyu Guan

Abstract High melting point (HMP) lead-free solder, hybrid sinter and transient liquidus phase sinter (TLPS) are the emerging lead-free alternatives for the potential replacement of high-lead solder. Lead-free solder is perfectly compatible with existing high-lead soldering processes for clip bond packages. The benefit of hybrid sinter is that it has much higher thermal and electrical conductivity than lead-free or high-lead solder. In this study, ten materials (including lead-free solders, hybrid sinter paste and TLPS) were first evaluated via die shear test. With the initial material screening, two lead-free solders (solder 1 and 2), two hybrid Ag sinter pastes (sinter i and ii) and one TLPS proceeded to internal sample assembly. For the lead-free solders, a process optimization with the aid of vacuum reflow was made to reduce void rate. Due to the slow and unbalanced inter-diffusion of Ag-Cu sintering than Ag-Ag sintering, optimizations to enhance the hybrid Ag sintering include Ag finishing for the die metallization and Ag plating for the clip and bond area of the leadframe. In 0-hour package electrical test, solder 1 and sinter i passed and were sent for reliability testing while solder 2, sinter ii and TLPS failed due to intermetallic compound (IMC) cracking, material bleeding and die cracking, respectively. In the reliability testing, a basic scheme of thermal cycling (TC) 1000 cycles, intermittent operating life (IOL) 750 hrs and highly accelerated temperature and humidity stress test (HAST) 96 hrs was defined for the early feasibility study. 1 of 75 sinter i units failed by TC 1000 cycles due to separation between silver sinter structure and die bottom metallization. Solder 1 passed the basic scheme without defects, and next the material workability and clip bond strength need to be improved to the equivalent level of high-lead solders.


Sign in / Sign up

Export Citation Format

Share Document