Identification of Hypoxia-Ischemia by chemometrics considering systemic changes of the physiology

Author(s):  
Hector Lafuente ◽  
Ion Olaetxea ◽  
Ana Valero ◽  
Francisco Jose Alvarez ◽  
Ander Izeta ◽  
...  
Keyword(s):  
2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S444-S444 ◽  
Author(s):  
Kristin M Noppens ◽  
J Regino Perez-Polo ◽  
David K Rassin ◽  
Karin N Westlund ◽  
Roderic Fabian ◽  
...  

Author(s):  
Elisabetta Gerace ◽  
Francesca Cialdai ◽  
Elettra Sereni ◽  
Daniele Lana ◽  
Daniele Nosi ◽  
...  

AbstractBrain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia. Hippocampal slices were exposed to oxygen and glucose deprivation (OGD) for 30 min followed by NIR laser light (fluence 3.71, 7.42, or 14.84 J/cm2; wavelengths 808 nm and 905 nm) delivered immediately or 30 min or 60 min after OGD, in order to establish a therapeutic window. Neuronal injury was assessed by propidium iodide fluorescence 24 h later. Our results show that NIR laser irradiation attenuates OGD neurotoxicity once applied immediately or 30 min after OGD. Western blot analysis of proteins involved in neuroinflammation (iNOS, COX-2, NFkB subunit p65, and Bcl-2) and in glutamatergic-mediated synaptic activity (vGluT1, EAAT2, GluN1, and PSD95) showed that the protein modifications induced by OGD were reverted by NIR laser application. Moreover, CA1 confocal microscopy revealed that the profound morphological changes induced by OGD were reverted by NIR laser radiation. In conclusion, NIR laser radiation attenuates OGD neurotoxicity in organotypic hippocampal slices through attenuation of inflammatory mechanisms. These findings shed light on molecular definition of NIR neuroprotective mechanisms, thus underlining the potential benefit of this technique for the treatment of cerebral ischemia.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 898
Author(s):  
Brian H. Kim ◽  
Maciej Jeziorek ◽  
Hur Dolunay Kanal ◽  
Viorica Raluca Contu ◽  
Radek Dobrowolski ◽  
...  

Recent studies of cerebral hypoxia-ischemia (HI) have highlighted slowly progressive neurodegeneration whose mechanisms remain elusive, but if blocked, could considerably improve long-term neurological function. We previously established that the cytokine transforming growth factor (TGF)β1 is highly elevated following HI and that delivering an antagonist for TGFβ receptor activin-like kinase 5 (ALK5)—SB505124—three days after injury in a rat model of moderate pre-term HI significantly preserved the structural integrity of the thalamus and hippocampus as well as neurological functions associated with those brain structures. To elucidate the mechanism whereby ALK5 inhibition reduces cell death, we assessed levels of autophagy markers in neurons and found that SB505124 increased numbers of autophagosomes and levels of lipidated light chain 3 (LC3), a key protein known to mediate autophagy. However, those studies did not determine whether (1) SB was acting directly on the CNS and (2) whether directly inducing autophagy could decrease cell death and improve outcome. Here we show that administering an ALK5 antagonist three days after HI reduced actively apoptotic cells by ~90% when assessed one week after injury. Ex vivo studies using the lysosomal inhibitor chloroquine confirmed that SB505124 enhanced autophagy flux in the injured hemisphere, with a significant accumulation of the autophagic proteins LC3 and p62 in SB505124 + chloroquine treated brain slices. We independently activated autophagy using the stimulatory peptide Tat-Beclin1 to determine if enhanced autophagy is directly responsible for improved outcomes. Administering Tat-Beclin1 starting three days after injury preserved the structural integrity of the hippocampus and thalamus with improved sensorimotor function. These data support the conclusion that intervening at this phase of injury represents a window of opportunity where stimulating autophagy is beneficial.


Author(s):  
Raymand Pang ◽  
Adnan Avdic-Belltheus ◽  
Christopher Meehan ◽  
Kathryn Martinello ◽  
Tatenda Mutshiya ◽  
...  

Abstract As therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-hour hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (<48 hours old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 hours) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) triple therapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 hours after hypoxia-ischemia. Hypoxia-ischemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia-ischemia for melatonin (15-30mg/L) and within 30 minutes of erythropoietin administration (maximum concentration 10,000 mU/mL). Compared to hypothermia + vehicle, we observed faster amplitude integrated EEG recovery from 25-30 hours with hypothermia + melatonin (p = 0.02) and hypothermia + erythropoietin (p = 0.033) and from 55-60 hours with triple therapy (p = 0.042). Magnetic Resonance Spectroscopy Lactate/N-acetyl aspartate peak ratio was lower at 66 hours in hypothermia + melatonin (p = 0.012) and triple therapy (p = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (p = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (p = 0.014) and periventricular white matter (p = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (p < 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude integrated EEG recovery, amelioration of Lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin double therapy was association with EEG recovery and was most effective in promoting oligodendrocyte survival. Triple therapy provided no added benefit over the double therapies in this 72-hour study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia-ischemia.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107192 ◽  
Author(s):  
Cuicui Xie ◽  
Kai Zhou ◽  
Xiaoyang Wang ◽  
Klas Blomgren ◽  
Changlian Zhu

2018 ◽  
Vol 40 (5-6) ◽  
pp. 490-496 ◽  
Author(s):  
R. Ann Sheldon ◽  
Christine Windsor ◽  
Donna M. Ferriero

Neonatal hypoxic-ischemic brain injury is commonly studied by means of the Vannucci procedure in mice or rats (unilateral common carotid artery occlusion followed by hypoxia). Previously, we modified the postnatal day 7 (P7) rat procedure for use in mice, and later demonstrated that genetic strain strongly influences the degree of brain injury in the P7 mouse model of hypoxia-ischemia (HI). Recently, the P9 or P10 mouse brain was recognized as the developmental equivalent of a term neonatal human brain, rather than P7. Consequently, the Vannucci procedure has again been modified, and a commonly used protocol employs 10% oxygen for 50 min in C57Bl/6 mice. Strain differences have yet to be described for the P9/P10 mouse model. In order to determine if the strain differences we previously reported in the P7 mouse model are present in the P9 model, we compared 2 commonly used strains, CD1 and C57Bl/6J, in both the P7 (carotid ligation [in this case, right] followed by exposure to 8% oxygen for 30 min) and P9 (carotid ligation [in this case left] followed by exposure to 10% oxygen) models of HI. Experiments using the P7 model were performed in 2001–2012 and those using the P9 model were performed in 2012–2016. Five to seven days after the HI procedure, mice were perfused with 4% paraformaldehyde, their brains were sectioned on a Vibratome (50 µm) and alternate sections were stained with Perl’s iron stain or cresyl violet. Brain sections were examined microscopically and scored for the degree of injury. Since brains in the P7 group had been scored previously with a slightly different system, they were reanalyzed using our current scoring system which scores injury in 11 regions: the anterior, middle, and posterior cortex; the anterior, middle, and posterior striatum; CA1, CA2, CA3, and the dentate gyrus of the hippocampus and thalamus, on a scale from 0 (none) to 3 (cystic infarct) for a total score of 0–33. Brains in the P9 group were scored with the same system. Given the same insult, the P7 CD1 mice had greater injury than the C57Bl/6J mice, which agrees with our previous findings. The P9 CD1 mice also had greater injury than the C57Bl/6J mice. This study confirms that CD1 mice are more susceptible to injury than C57Bl/6J mice and that strain selection is important when using mouse models of HI.


Sign in / Sign up

Export Citation Format

Share Document