Analysis and Design of PLL Less Current Control for Weak Grid-Tied LCL Type Voltage Source Converter

Author(s):  
Suresh Maganti ◽  
Narayana Prasad Padhy
2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3316 ◽  
Author(s):  
Dong Wang ◽  
Xiaojie Zhang ◽  
Lei Yang ◽  
Yunhui Huang ◽  
Wei Huang ◽  
...  

Recent studies show that the loss of stability for a voltage-source converter (VSC) in weak-grid connection is largely related to its synchronization unit, i.e., the phase-locked loop (PLL). This paper studies the synchronization stability of a system comprised by two VSCs in parallel connection to a weak grid. A reduced transfer function based small-signal model, which can allow for the interactions between PLL and converter outer power controls, is first proposed. Then, an improved net damping criterion is used to analyze the damping and stability characters of such system under various operating conditions and different controller configurations. Compared to the conventional net damping criterion, the used criterion has wider applicability in terms of stability judgment. Case studies show that the studied system tends to be unstable at weak-grid or heavy-loading conditions. The instability can be in the form of oscillations or monotonic divergence, in which, the latter is more likely to occur for the converters without grid voltage regulation capabilities. Besides, the net damping-based sensitivity studies can provide guidance on control tuning or design for stability enhancement. Detailed model-based time domain simulations are conducted to verify the analysis results.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4458 ◽  
Author(s):  
Yang ◽  
Yuan

The effect of frequency variation on system stability becomes crucial when a voltage source converter (VSC) is connected to a weak grid. However, previous studies lack enough mechanism cognitions of this effect, especially on the stability issues in DC voltage control (DVC) timescale (around 100 ms). Hence, this paper presented a thorough analysis of the effect mechanism of frequency variation on the weak grid-connected VSC system stability in a DVC timescale. Firstly, based on instantaneous power theory, a novel method in which the active/reactive powers are calculated with the time-varying frequency of voltage vectors was proposed. This method could intuitively reflect the effect of frequency variation on the active/reactive powers and could also help reduce the system order to a certain extent. Then, a small-signal model was established based on the motion equation concept, to depict the effect of frequency variation on the weak grid-connected VSC system dynamics. Furthermore, an analytical method was utilized to quantify the effect of frequency variation on the system’s small-signal stability. The quantitative analysis considered the interactions between the DC voltage control, the terminal voltage control, phase-locked loop, and the power network. Finally, case studies were conducted, and simulation results supported the analytical analyses.


Author(s):  
R. S. Bajpai ◽  
Amarjeet Singh

This paper deals with sliding mode control of converter and its application to distributed generation. Sliding mode control is used to control the voltage source converter in voltage or current control mode. Modeling and control of H bridge converter system using sliding mode control is proposed. Easily implemented sliding surfaces provide prominent dynamic characteristics against changes in the load and in the input voltage. Distribution static compensator (DSTATCOM) is used to control the voltage of the bus to which it is connected to a balance sinusoid in respect of the harmonic distortion in supply or load side. A variable wind turbine generator is used to produces a variable DC voltage which is placed as input voltage source to converter of DSTATCOM. A control strategy for grid voltage control using DSTATCOM in voltage control mode has been implemented in respect of the wind variation. The results are validated using PSCAD/EMTDC simulation studies.


Sign in / Sign up

Export Citation Format

Share Document