Etching Process Effects on Surface Structure, Fracture Strength, and Reliability of Single-Crystal Silicon Theta-Like Specimens

2013 ◽  
Vol 22 (3) ◽  
pp. 589-602 ◽  
Author(s):  
Michael S. Gaither ◽  
Richard S. Gates ◽  
Rebecca Kirkpatrick ◽  
Robert F. Cook ◽  
Frank W. DelRio
2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Weijia Guo ◽  
Senthil Kumar Anantharajan ◽  
Xinquan Zhang ◽  
Hui Deng

Abstract In this study, atmospheric-pressure (AP) plasma generated using He/O2/CF4 mixture as feed gas was used to etch the single-crystal silicon (100) wafer and the characteristics of the etched surface were investigated. The wafer morphology and surface elemental composition were analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The XPS results reveal that the fluorine element will be deposited on the wafer surface during the etching process when oxygen was not introduced as the feed gas. By detecting the energy and intensity of emitted particles, optical emission spectroscopy (OES) is used to identify the radicals in plasma. The fluorocarbon radicals generated during CF4 plasma ionization can form carbon fluoride polymer, which is considered as one factor to suppress the etching process. The roughness was measured to be changed with the increase in the etching time. The surface appears to be rougher at first when the plasma etching occurred on the subsurface damaged (SSD) layer, and the subsurface cracks would show on the surface after a short-time etching. After the damaged layer was fully removed, etching resulted in the formation of square-opening etching pits. During extended etching, the individual etching pits grew up and coalesced with one another; this coalescence provided an improved surface roughness. This study explains the AP plasma etching mechanism, and the formation of anisotropic surface etching pits at a microscale level for promoting the micromachining process.


1991 ◽  
Vol 226 ◽  
Author(s):  
C.C. Chao ◽  
R. Chleboski ◽  
E.J. Henderson ◽  
C.K. Holmes ◽  
J.P. Kalejs ◽  
...  

AbstractThe fracture twist test is used to obtain the statistical fracture strength distribution for 10-cm square single crystal and polycrystalline silicon wafers cut with a high-power Nd:YAG laser. Tensile wafer edge stresses at fracture are calculated using nonlinear finite element analysis, and the model results are used to examine the limitations of linear torsion and plate theories. The basic hypothesis is that fracture strength of laser-cut wafers is limited by microcracks formed by large residual tensile stresses produced in the cut edge upon cooling after cutting. Differences are found between single crystal CZ and polycrystalline EFG silicon material Weibull parameters characterizing the fracture strength distribution. These indicate that there is a statistical influence of material variables on the fracture strength of the EFG silicon, which lowers its strength and increases the variance of fracture response in comparison to single crystal silicon.


Sign in / Sign up

Export Citation Format

Share Document